» Articles » PMID: 30457989

Loss of the Mia40a Oxidoreductase Leads to Hepato-pancreatic Insufficiency in Zebrafish

Abstract

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.

Citing Articles

NADH-bound AIF activates the mitochondrial CHCHD4/MIA40 chaperone by a substrate-mimicry mechanism.

Brosey C, Shen R, Tainer J EMBO J. 2025; 44(4):1220-1248.

PMID: 39806100 PMC: 11832770. DOI: 10.1038/s44318-024-00360-6.


Secreted novel AID/APOBEC-like deaminase 1 (SNAD1) - a new important player in fish immunology.

Majewska A, Dietrich M, Budzko L, Adamek M, Figlerowicz M, Ciereszko A Front Immunol. 2024; 15:1340273.

PMID: 38601149 PMC: 11004436. DOI: 10.3389/fimmu.2024.1340273.


The Effect of DNA Methylation in the Development and Progression of Chronic Kidney Disease in the General Population: An Epigenome-Wide Association Study Using the Korean Genome and Epidemiology Study Database.

Kim J, Jo M, Cho E, Ahn S, Kwon Y, Gim J Genes (Basel). 2023; 14(7).

PMID: 37510393 PMC: 10379047. DOI: 10.3390/genes14071489.


Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish.

Uszczynska-Ratajczak B, Sugunan S, Kwiatkowska M, Migdal M, Carbonell-Sala S, Sokol A Life Sci Alliance. 2022; 6(1).

PMID: 36283702 PMC: 9595208. DOI: 10.26508/lsa.202201514.


Transgenic fluorescent zebrafish lines that have revolutionized biomedical research.

Choe C, Choi S, Kee Y, Kim M, Kim S, Lee Y Lab Anim Res. 2021; 37(1):26.

PMID: 34496973 PMC: 8424172. DOI: 10.1186/s42826-021-00103-2.


References
1.
Kuhl I, Miranda M, Atanassov I, Kuznetsova I, Hinze Y, Mourier A . Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. Elife. 2017; 6. PMC: 5703644. DOI: 10.7554/eLife.30952. View

2.
Hangen E, Feraud O, Lachkar S, Mou H, Doti N, Fimia G . Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Mol Cell. 2015; 58(6):1001-14. DOI: 10.1016/j.molcel.2015.04.020. View

3.
Mendelsohn B, Kassebaum B, Gitlin J . The zebrafish embryo as a dynamic model of anoxia tolerance. Dev Dyn. 2008; 237(7):1780-8. PMC: 3081722. DOI: 10.1002/dvdy.21581. View

4.
Chatzi A, Manganas P, Tokatlidis K . Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease. Biochim Biophys Acta. 2016; 1863(6 Pt A):1298-306. PMC: 5405047. DOI: 10.1016/j.bbamcr.2016.03.023. View

5.
Thisse C, Thisse B . High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008; 3(1):59-69. DOI: 10.1038/nprot.2007.514. View