Hackenberg M, Brunn N, Vogel T, Binder H
Commun Biol. 2025; 8(1):414.
PMID: 40069486
PMC: 11897155.
DOI: 10.1038/s42003-025-07872-9.
Dong S, Cui Z, Liu D, Lei J
Interdiscip Sci. 2025; .
PMID: 39982678
DOI: 10.1007/s12539-025-00688-5.
Vo D, Thorne T
BMC Bioinformatics. 2024; 25(1):339.
PMID: 39462345
PMC: 11515282.
DOI: 10.1186/s12859-024-05946-9.
Gui B, Wang Q, Wang J, Li X, Wu Q, Chen H
Heliyon. 2024; 10(19):e38259.
PMID: 39391497
PMC: 11466595.
DOI: 10.1016/j.heliyon.2024.e38259.
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander A
BMC Bioinformatics. 2024; 25(1):305.
PMID: 39294560
PMC: 11411778.
DOI: 10.1186/s12859-024-05926-z.
scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data.
Xu Y, Wang S, Feng Q, Xia J, Li Y, Li H
Nat Commun. 2024; 15(1):7561.
PMID: 39215003
PMC: 11364754.
DOI: 10.1038/s41467-024-51891-9.
Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics.
Gulati G, DSilva J, Liu Y, Wang L, Newman A
Nat Rev Mol Cell Biol. 2024; 26(1):11-31.
PMID: 39169166
DOI: 10.1038/s41580-024-00768-2.
aKNNO: single-cell and spatial transcriptomics clustering with an optimized adaptive k-nearest neighbor graph.
Li J, Shyr Y, Liu Q
Genome Biol. 2024; 25(1):203.
PMID: 39090647
PMC: 11293182.
DOI: 10.1186/s13059-024-03339-y.
Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
Sang-Aram C, Browaeys R, Seurinck R, Saeys Y
Elife. 2024; 12.
PMID: 38787371
PMC: 11126312.
DOI: 10.7554/eLife.88431.
Heterogeneity and molecular landscape of melanoma: implications for targeted therapy.
Beigi Y, Lanjanian H, Fayazi R, Salimi M, Hoseyni B, Noroozizadeh M
Mol Biomed. 2024; 5(1):17.
PMID: 38724687
PMC: 11082128.
DOI: 10.1186/s43556-024-00182-2.
Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning.
Gao Y, Dong K, Gao Y, Jin X, Yang J, Yan G
Cell Genom. 2024; 4(5):100553.
PMID: 38688285
PMC: 11099349.
DOI: 10.1016/j.xgen.2024.100553.
Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes.
Bao S, Fan Y, Mei Y, Gao J
Heliyon. 2024; 10(4):e25640.
PMID: 38379985
PMC: 10877256.
DOI: 10.1016/j.heliyon.2024.e25640.
scMMT: a multi-use deep learning approach for cell annotation, protein prediction and embedding in single-cell RNA-seq data.
Zhou S, Li Y, Wu W, Li L
Brief Bioinform. 2024; 25(2).
PMID: 38300515
PMC: 10833085.
DOI: 10.1093/bib/bbad523.
scSID: A lightweight algorithm for identifying rare cell types by capturing differential expression from single-cell sequencing data.
Wang S, Li H, Zhang K, Wu H, Pang S, Wu W
Comput Struct Biotechnol J. 2024; 23:589-600.
PMID: 38274993
PMC: 10809081.
DOI: 10.1016/j.csbj.2023.12.043.
New perspectives on biology, disease progression, and therapy response of head and neck cancer gained from single cell RNA sequencing and spatial transcriptomics.
Heller G, Fuereder T, Grandits A, Wieser R
Oncol Res. 2024; 32(1):1-17.
PMID: 38188682
PMC: 10767240.
DOI: 10.32604/or.2023.044774.
MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer.
Wang X, Duan M, Li J, Ma A, Xin G, Xu D
Nat Commun. 2024; 15(1):338.
PMID: 38184630
PMC: 10771517.
DOI: 10.1038/s41467-023-44570-8.
CAKE: a flexible self-supervised framework for enhancing cell visualization, clustering and rare cell identification.
Liu J, Zeng W, Kan S, Li M, Zheng R
Brief Bioinform. 2023; 25(1).
PMID: 38145950
PMC: 10749894.
DOI: 10.1093/bib/bbad475.
Rarity: discovering rare cell populations from single-cell imaging data.
Martens K, Bortolomeazzi M, Montorsi L, Spencer J, Ciccarelli F, Yau C
Bioinformatics. 2023; 39(12).
PMID: 38092048
PMC: 10751233.
DOI: 10.1093/bioinformatics/btad750.
A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics.
Segato Dezem F, Marcao M, Ben-Cheikh B, Nikulina N, Omotoso A, Burnett D
BMC Genomics. 2023; 24(1):717.
PMID: 38017371
PMC: 10683105.
DOI: 10.1186/s12864-023-09722-6.
Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
Lei T, Chen R, Zhang S, Chen Y
Brief Bioinform. 2023; 24(6).
PMID: 37769630
PMC: 10539043.
DOI: 10.1093/bib/bbad335.