» Articles » PMID: 30413715

Discovery of Rare Cells from Voluminous Single Cell Expression Data

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Nov 11
PMID 30413715
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Single cell messenger RNA sequencing (scRNA-seq) provides a window into transcriptional landscapes in complex tissues. The recent introduction of droplet based transcriptomics platforms has enabled the parallel screening of thousands of cells. Large-scale single cell transcriptomics is advantageous as it promises the discovery of a number of rare cell sub-populations. Existing algorithms to find rare cells scale unbearably slowly or terminate, as the sample size grows to the order of tens of thousands. We propose Finder of Rare Entities (FiRE), an algorithm that, in a matter of seconds, assigns a rareness score to every individual expression profile under study. We demonstrate how FiRE scores can help bioinformaticians focus the downstream analyses only on a fraction of expression profiles within ultra-large scRNA-seq data. When applied to a large scRNA-seq dataset of mouse brain cells, FiRE recovered a novel sub-type of the pars tuberalis lineage.

Citing Articles

Infusing structural assumptions into dimensionality reduction for single-cell RNA sequencing data to identify small gene sets.

Hackenberg M, Brunn N, Vogel T, Binder H Commun Biol. 2025; 8(1):414.

PMID: 40069486 PMC: 11897155. DOI: 10.1038/s42003-025-07872-9.


scRDiT: Generating Single-cell RNA-seq Data by Diffusion Transformers and Accelerating Sampling.

Dong S, Cui Z, Liu D, Lei J Interdiscip Sci. 2025; .

PMID: 39982678 DOI: 10.1007/s12539-025-00688-5.


Shrinkage estimation of gene interaction networks in single-cell RNA sequencing data.

Vo D, Thorne T BMC Bioinformatics. 2024; 25(1):339.

PMID: 39462345 PMC: 11515282. DOI: 10.1186/s12859-024-05946-9.


Cross-species comparison of airway epithelium transcriptomics.

Gui B, Wang Q, Wang J, Li X, Wu Q, Chen H Heliyon. 2024; 10(19):e38259.

PMID: 39391497 PMC: 11466595. DOI: 10.1016/j.heliyon.2024.e38259.


Leveraging gene correlations in single cell transcriptomic data.

Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander A BMC Bioinformatics. 2024; 25(1):305.

PMID: 39294560 PMC: 11411778. DOI: 10.1186/s12859-024-05926-z.


References
1.
Slansky J . Antigen-specific T cells: analyses of the needles in the haystack. PLoS Biol. 2003; 1(3):E78. PMC: 300688. DOI: 10.1371/journal.pbio.0000078. View

2.
Zappia L, Phipson B, Oshlack A . Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017; 18(1):174. PMC: 5596896. DOI: 10.1186/s13059-017-1305-0. View

3.
Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M . Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5):1202-1214. PMC: 4481139. DOI: 10.1016/j.cell.2015.05.002. View

4.
Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A . Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006; 445(7124):168-76. DOI: 10.1038/nature05453. View

5.
Altman J, Moss P, Goulder P, Barouch D, McHeyzer-Williams M, Bell J . Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996. 274: 94-96. J Immunol. 2011; 187(1):7-9. View