» Articles » PMID: 23897237

Single-cell Sequencing-based Technologies Will Revolutionize Whole-organism Science

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2013 Jul 31
PMID 23897237
Citations 536
Authors
Affiliations
Soon will be listed here.
Abstract

The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.

Citing Articles

A comprehensive cell atlas of fall armyworm (Spodoptera frugiperda) larval gut and fat body via snRNA-Seq.

Sun C, Shao Y, Iqbal J Sci Data. 2025; 12(1):250.

PMID: 39939604 PMC: 11822134. DOI: 10.1038/s41597-025-04520-z.


Mapping Human Uterine Disorders Through Single-Cell Transcriptomics.

Boldu-Fernandez S, Lliberos C, Simon C, Mas A Cells. 2025; 14(3).

PMID: 39936948 PMC: 11817058. DOI: 10.3390/cells14030156.


Research Trends and Dynamics in Single-cell RNA Sequencing for Musculoskeletal Diseases: A Scientometric and Visualization Study.

Cao S, Wei Y, Yue Y, Wang D, Xiong A, Yang J Int J Med Sci. 2025; 22(3):528-550.

PMID: 39898252 PMC: 11783068. DOI: 10.7150/ijms.104697.


Explainable deep neural networks for predicting sample phenotypes from single-cell transcriptomics.

Martorell-Marugan J, Lopez-Dominguez R, Villatoro-Garcia J, Toro-Dominguez D, Chierici M, Jurman G Brief Bioinform. 2025; 26(1.

PMID: 39814561 PMC: 11735047. DOI: 10.1093/bib/bbae673.


An improved bacterial single-cell RNA-seq reveals biofilm heterogeneity.

Yan X, Liao H, Wang C, Huang C, Zhang W, Guo C Elife. 2024; 13.

PMID: 39689163 PMC: 11651652. DOI: 10.7554/eLife.97543.


References
1.
Kim M, Oskarsson T, Acharyya S, Nguyen D, Zhang X, Norton L . Tumor self-seeding by circulating cancer cells. Cell. 2010; 139(7):1315-26. PMC: 2810531. DOI: 10.1016/j.cell.2009.11.025. View

2.
Fidler I . Critical determinants of metastasis. Semin Cancer Biol. 2002; 12(2):89-96. DOI: 10.1006/scbi.2001.0416. View

3.
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno K, Yamada R . An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006; 34(5):e42. PMC: 1409679. DOI: 10.1093/nar/gkl050. View

4.
Nik-Zainal S, Van Loo P, Wedge D, Alexandrov L, Greenman C, Lau K . The life history of 21 breast cancers. Cell. 2012; 149(5):994-1007. PMC: 3428864. DOI: 10.1016/j.cell.2012.04.023. View

5.
Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich T, Kainuma T, Tsurimoto T . Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res. 2011; 39(15):6475-88. PMC: 3159477. DOI: 10.1093/nar/gkr343. View