» Articles » PMID: 30242258

Notch2 Controls Non-autonomous Wnt-signalling in Chronic Lymphocytic Leukaemia

Abstract

The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-β mediated degradation of β-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises β-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.

Citing Articles

Hepatocellular carcinoma: signaling pathways and therapeutic advances.

Zheng J, Wang S, Xia L, Sun Z, Chan K, Bernards R Signal Transduct Target Ther. 2025; 10(1):35.

PMID: 39915447 PMC: 11802921. DOI: 10.1038/s41392-024-02075-w.


Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells.

Navratil J, Kratochvilova M, Raudenska M, Balvan J, Vicar T, Petrlakova K Cancer Cell Int. 2024; 24(1):313.

PMID: 39261823 PMC: 11389562. DOI: 10.1186/s12935-024-03495-y.


Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy.

Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y J Hematol Oncol. 2024; 17(1):46.

PMID: 38886806 PMC: 11184729. DOI: 10.1186/s13045-024-01563-4.


Progression of Notch signaling regulation of B cells under radiation exposure.

Shu X, Wang J, Zeng H, Shao L Front Immunol. 2024; 15:1339977.

PMID: 38524139 PMC: 10957566. DOI: 10.3389/fimmu.2024.1339977.


Identification of the Axis β-Catenin-BTK in the Dynamic Adhesion of Chronic Lymphocytic Leukemia Cells to Their Microenvironment.

Mihoub I, Rharass T, Ouriemmi S, Oudar A, Aubard L, Gratio V Int J Mol Sci. 2023; 24(24).

PMID: 38139452 PMC: 10744074. DOI: 10.3390/ijms242417623.


References
1.
Hidvegi T, Ermolin G, Efremov E, Dikov M, Kurmanova L, Vnashenkova G . FN-C1q and C1 INH C1r-C1s complexes as indicators of complement activation in patients with chronic lymphocytic leukaemia. Immunol Lett. 1989; 22(1):1-6. DOI: 10.1016/0165-2478(89)90133-8. View

2.
Wang L, Lawrence M, Wan Y, Stojanov P, Sougnez C, Stevenson K . SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011; 365(26):2497-506. PMC: 3685413. DOI: 10.1056/NEJMoa1109016. View

3.
Kulis M, Heath S, Bibikova M, Queiros A, Navarro A, Clot G . Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012; 44(11):1236-42. DOI: 10.1038/ng.2443. View

4.
Marquez M, Hernandez-Uzcategui O, Cornejo A, Vargas P, Da Costa O . Bone marrow stromal mesenchymal cells induce down regulation of CD20 expression on B-CLL: implications for rituximab resistance in CLL. Br J Haematol. 2015; 169(2):211-8. DOI: 10.1111/bjh.13286. View

5.
Lutzny G, Kocher T, Schmidt-Supprian M, Rudelius M, Klein-Hitpass L, Finch A . Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell. 2013; 23(1):77-92. PMC: 3546417. DOI: 10.1016/j.ccr.2012.12.003. View