» Articles » PMID: 30177752

Targeting Mitochondria for Cardiovascular Disorders: Therapeutic Potential and Obstacles

Overview
Journal Nat Rev Cardiol
Date 2018 Sep 5
PMID 30177752
Citations 105
Authors
Affiliations
Soon will be listed here.
Abstract

A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.

Citing Articles

Functional Nucleic Acid Nanostructures for Mitochondrial Targeting: The Basis of Customized Treatment Strategies.

He W, Dong S, Zeng Q Molecules. 2025; 30(5).

PMID: 40076250 PMC: 11902231. DOI: 10.3390/molecules30051025.


Endothelial Cu Uptake Transporter CTR1 Senses Disturbed Flow to Promote Atherosclerosis through Cuproptosis.

Sudhahar V, Xiao Z, Das A, Ash D, Yadav S, Matier C bioRxiv. 2025; .

PMID: 39975331 PMC: 11838200. DOI: 10.1101/2025.01.27.634587.


Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology.

Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q Adv Sci (Weinh). 2025; 12(9):e2404431.

PMID: 39921286 PMC: 11884534. DOI: 10.1002/advs.202404431.


Targeting mitochondrial transfer: a new horizon in cardiovascular disease treatment.

Zuo B, Li X, Xu D, Zhao L, Yang Y, Luan Y J Transl Med. 2024; 22(1):1160.

PMID: 39741312 PMC: 11687156. DOI: 10.1186/s12967-024-05979-x.


Nrf2/NRF1 signaling activation and crosstalk amplify mitochondrial biogenesis in the treatment of triptolide-induced cardiotoxicity using calycosin.

Qi X, Zhang W, Zuo Y, Qiao Y, Zhang Y, Ren J Cell Biol Toxicol. 2024; 41(1):2.

PMID: 39707073 PMC: 11662064. DOI: 10.1007/s10565-024-09969-z.


References
1.
Zhou H, Swanson R, Simonis U, Ma X, Cecchini G, Gray M . Poly(ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts. Am J Physiol Heart Circ Physiol. 2006; 291(2):H714-23. DOI: 10.1152/ajpheart.00823.2005. View

2.
Jiang X, Li L, Ying Z, Pan C, Huang S, Li L . A Small Molecule That Protects the Integrity of the Electron Transfer Chain Blocks the Mitochondrial Apoptotic Pathway. Mol Cell. 2016; 63(2):229-239. DOI: 10.1016/j.molcel.2016.06.016. View

3.
Choi S, Reddy P . Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol. 2014; 11(9):536-47. PMC: 4151470. DOI: 10.1038/nrclinonc.2014.102. View

4.
Brown D, Hale S, Baines C, Del Rio C, Hamlin R, Yueyama Y . Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther. 2013; 19(1):121-32. PMC: 4103197. DOI: 10.1177/1074248413508003. View

5.
Sandanger O, Ranheim T, Vinge L, Bliksoen M, Alfsnes K, Finsen A . The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2013; 99(1):164-74. DOI: 10.1093/cvr/cvt091. View