» Articles » PMID: 30176102

Bimetallic Nanoparticles in Supported Ionic Liquid Phases As Multifunctional Catalysts for the Selective Hydrodeoxygenation of Aromatic Substrates

Overview
Specialty Chemistry
Date 2018 Sep 4
PMID 30176102
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Bimetallic iron-ruthenium nanoparticles embedded in an acidic supported ionic liquid phase (FeRu@SILP+IL-SO H) act as multifunctional catalysts for the selective hydrodeoxygenation of carbonyl groups in aromatic substrates. The catalyst material is assembled systematically from molecular components to combine the acid and metal sites that allow hydrogenolysis of the C=O bonds without hydrogenation of the aromatic ring. The resulting materials possess high activity and stability for the catalytic hydrodeoxygenation of C=O groups to CH units in a variety of substituted aromatic ketones and, hence, provide an effective and benign alternative to traditional Clemmensen and Wolff-Kishner reductions, which require stoichiometric reagents. The molecular design of the FeRu@SILP+IL-SO H materials opens a general approach to multifunctional catalytic systems (MM'@SILP+IL-func).

Citing Articles

Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts.

Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W J Am Chem Soc. 2023; 145(41):22845-22854.

PMID: 37815193 PMC: 10591467. DOI: 10.1021/jacs.3c09290.


Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries.

Zhang C, Chen Z, Zhang H, Liu Y, Wei W, Zhou Y Molecules. 2023; 28(13).

PMID: 37446874 PMC: 10343779. DOI: 10.3390/molecules28135212.


Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles.

Valdebenito C, Pinto J, Nazarkovsky M, Chacon G, Martinez-Ferrate O, Wrighton-Araneda K Nanoscale Adv. 2022; 2(3):1325-1332.

PMID: 36133065 PMC: 9418861. DOI: 10.1039/d0na00055h.


Insights into Ionic Liquids: From Z-Bonds to Quasi-Liquids.

Wang Y, He H, Wang C, Lu Y, Dong K, Huo F JACS Au. 2022; 2(3):543-561.

PMID: 35373210 PMC: 8965826. DOI: 10.1021/jacsau.1c00538.


Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO adsorption selectivity.

Wang C, Wang Y, Gan Z, Lu Y, Qian C, Huo F Chem Sci. 2022; 12(47):15503-15510.

PMID: 35003578 PMC: 8654070. DOI: 10.1039/d1sc05431g.


References
1.
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K . Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angew Chem Int Ed Engl. 2017; 56(20):5412-5452. DOI: 10.1002/anie.201607257. View

2.
Yan N, Yuan Y, Dykeman R, Kou Y, Dyson P . Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids. Angew Chem Int Ed Engl. 2010; 49(32):5549-53. DOI: 10.1002/anie.201001531. View

3.
Besson M, Gallezot P, Pinel C . Conversion of biomass into chemicals over metal catalysts. Chem Rev. 2013; 114(3):1827-70. DOI: 10.1021/cr4002269. View

4.
Corma A, Iborra S, Velty A . Chemical routes for the transformation of biomass into chemicals. Chem Rev. 2007; 107(6):2411-502. DOI: 10.1021/cr050989d. View

5.
Van Doorslaer C, Wahlen J, Mertens P, Thijs B, Nockemann P, Binnemans K . Catalytic hydrogenolysis of aromatic ketones in mixed choline-betainium ionic liquids. ChemSusChem. 2008; 1(12):997-1005. DOI: 10.1002/cssc.200800140. View