» Articles » PMID: 29899401

Energy Transfer and Correlations in Cavity-embedded Donor-acceptor Configurations

Overview
Journal Sci Rep
Specialty Science
Date 2018 Jun 15
PMID 29899401
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range interactions in a simplified model consisting of effective two-level quantum emitters that could be relevant for molecules in experiments under cryogenic conditions. We find that free-space collective incoherent interactions, typically associated with sub- and superradiance, can modify the traditional resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit concurrence as a measure of entanglement.

Citing Articles

Cavity-enhanced energy transport in molecular systems.

Sandik G, Feist J, Garcia-Vidal F, Schwartz T Nat Mater. 2024; 24(3):344-355.

PMID: 39122930 DOI: 10.1038/s41563-024-01962-5.


The Rise and Current Status of Polaritonic Photochemistry and Photophysics.

Bhuyan R, Mony J, Kotov O, Castellanos G, Gomez Rivas J, Shegai T Chem Rev. 2023; 123(18):10877-10919.

PMID: 37683254 PMC: 10540218. DOI: 10.1021/acs.chemrev.2c00895.


Theoretical Analysis of Exciton Wave Packet Dynamics in Polaritonic Wires.

Aroeira G, Kairys K, Ribeiro R J Phys Chem Lett. 2023; 14(24):5681-5691.

PMID: 37314883 PMC: 10291640. DOI: 10.1021/acs.jpclett.3c01082.


Simulating molecular polaritons in the collective regime using few-molecule models.

Perez-Sanchez J, Koner A, Stern N, Yuen-Zhou J Proc Natl Acad Sci U S A. 2023; 120(15):e2219223120.

PMID: 37023135 PMC: 10104552. DOI: 10.1073/pnas.2219223120.


Polariton chemistry: Thinking inside the (photon) box.

Yuen-Zhou J, Menon V Proc Natl Acad Sci U S A. 2019; 116(12):5214-5216.

PMID: 30858328 PMC: 6431159. DOI: 10.1073/pnas.1900795116.


References
1.
Orgiu E, George J, Hutchison J, Devaux E, Dayen J, Doudin B . Conductivity in organic semiconductors hybridized with the vacuum field. Nat Mater. 2015; 14(11):1123-9. DOI: 10.1038/nmat4392. View

2.
Zhong X, Chervy T, Zhang L, Thomas A, George J, Genet C . Energy Transfer between Spatially Separated Entangled Molecules. Angew Chem Int Ed Engl. 2017; 56(31):9034-9038. PMC: 5575472. DOI: 10.1002/anie.201703539. View

3.
George J, Shalabney A, Hutchison J, Genet C, Ebbesen T . Liquid-Phase Vibrational Strong Coupling. J Phys Chem Lett. 2015; 6(6):1027-31. DOI: 10.1021/acs.jpclett.5b00204. View

4.
Garcia-Vidal F, Feist J . Long-distance operator for energy transfer. Science. 2017; 357(6358):1357-1358. DOI: 10.1126/science.aao4268. View

5.
Du M, Martinez-Martinez L, Ribeiro R, Hu Z, Menon V, Yuen-Zhou J . Theory for polariton-assisted remote energy transfer. Chem Sci. 2018; 9(32):6659-6669. PMC: 6115621. DOI: 10.1039/c8sc00171e. View