» Articles » PMID: 32220038

On the Role of Symmetry in Vibrational Strong Coupling: The Case of Charge-Transfer Complexation

Overview
Specialty Chemistry
Date 2020 Mar 29
PMID 32220038
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene-I CT complex, we find that VSC induces large changes in the equilibrium constant K of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.

Citing Articles

Subradiant plasmonic cavities make bright polariton states dark.

Yim J, Brawley Z, Sheldon M Nanophotonics. 2024; 13(11):2035-2045.

PMID: 39635085 PMC: 11501913. DOI: 10.1515/nanoph-2024-0058.


Measuring Kinetics under Vibrational Strong Coupling: Testing for a Change in the Nucleophilicity of Water and Alcohols.

Muller C, Mayer R, Piejko M, Patrahau B, Bauer V, Moran J Angew Chem Int Ed Engl. 2024; 63(49):e202410770.

PMID: 39167048 PMC: 11586696. DOI: 10.1002/anie.202410770.


Consequences of Vibrational Strong Coupling on Supramolecular Polymerization of Porphyrins.

Joseph K, de Waal B, Jansen S, van der Tol J, Vantomme G, Meijer E J Am Chem Soc. 2024; 146(17):12130-12137.

PMID: 38642054 PMC: 11066862. DOI: 10.1021/jacs.4c02267.


Molecular Polaritons for Chemistry, Photonics and Quantum Technologies.

Xiang B, Xiong W Chem Rev. 2024; 124(5):2512-2552.

PMID: 38416701 PMC: 10941193. DOI: 10.1021/acs.chemrev.3c00662.


Collective Strong Coupling Modifies Aggregation and Solvation.

Castagnola M, Haugland T, Ronca E, Koch H, Schafer C J Phys Chem Lett. 2024; 15(5):1428-1434.

PMID: 38290530 PMC: 10860139. DOI: 10.1021/acs.jpclett.3c03506.


References
1.
Ebbesen T . Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc Chem Res. 2016; 49(11):2403-2412. DOI: 10.1021/acs.accounts.6b00295. View

2.
Bakulin A, Lovrincic R, Yu X, Selig O, Bakker H, Rezus Y . Mode-selective vibrational modulation of charge transport in organic electronic devices. Nat Commun. 2015; 6:7880. PMC: 4538862. DOI: 10.1038/ncomms8880. View

3.
Munkhbat B, Wersall M, Baranov D, Antosiewicz T, Shegai T . Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Sci Adv. 2018; 4(7):eaas9552. PMC: 6035039. DOI: 10.1126/sciadv.aas9552. View

4.
Lin Z, Lawrence C, Xiao D, Kireev V, Skourtis S, Sessler J . Modulating unimolecular charge transfer by exciting bridge vibrations. J Am Chem Soc. 2009; 131(50):18060-2. DOI: 10.1021/ja907041t. View

5.
Herrera F, Spano F . Cavity-Controlled Chemistry in Molecular Ensembles. Phys Rev Lett. 2016; 116(23):238301. DOI: 10.1103/PhysRevLett.116.238301. View