» Articles » PMID: 30082777

Network Enhancement As a General Method to Denoise Weighted Biological Networks

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Aug 8
PMID 30082777
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Networks are ubiquitous in biology where they encode connectivity patterns at all scales of organization, from molecular to the biome. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper discovery of network patterns and dynamics. We propose Network Enhancement (NE), a method for improving the signal-to-noise ratio of undirected, weighted networks. NE uses a doubly stochastic matrix operator that induces sparsity and provides a closed-form solution that increases spectral eigengap of the input network. As a result, NE removes weak edges, enhances real connections, and leads to better downstream performance. Experiments show that NE improves gene-function prediction by denoising tissue-specific interaction networks, alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts fine-grained identification accuracy of species. Our results indicate that NE is widely applicable for denoising biological networks.

Citing Articles

KGRDR: a deep learning model based on knowledge graph and graph regularized integration for drug repositioning.

Luo H, Yang H, Zhang G, Wang J, Luo J, Yan C Front Pharmacol. 2025; 16:1525029.

PMID: 40008124 PMC: 11850324. DOI: 10.3389/fphar.2025.1525029.


scHNTL: single-cell RNA-seq data clustering augmented by high-order neighbors and triplet loss.

Meng H, Qin C, Long Z Bioinformatics. 2025; 41(2).

PMID: 39878904 PMC: 11878765. DOI: 10.1093/bioinformatics/btaf044.


Arsenic modifies the microbial community assembly of soil-root habitats in .

Lin J, Dai Z, Lei M, Qi Q, Zhou W, Ma L ISME Commun. 2025; 5(1):ycae172.

PMID: 39830094 PMC: 11742257. DOI: 10.1093/ismeco/ycae172.


PhyImpute and UniFracImpute: two imputation approaches incorporating phylogeny information for microbial count data.

Luo Q, Zhang S, Butt H, Chen Y, Jiang H, An L Brief Bioinform. 2024; 26(1).

PMID: 39708838 PMC: 11663024. DOI: 10.1093/bib/bbae653.


scVAG: Unified single-cell clustering via variational-autoencoder integration with Graph Attention Autoencoder.

Laghaee S, Eskandarian M, Fereidoon M, Koohi S Heliyon. 2024; 10(23):e40732.

PMID: 39687165 PMC: 11648904. DOI: 10.1016/j.heliyon.2024.e40732.


References
1.
Benson A, Gleich D, Leskovec J . Higher-order organization of complex networks. Science. 2016; 353(6295):163-6. PMC: 5133458. DOI: 10.1126/science.aad9029. View

2.
Stegle O, Teichmann S, Marioni J . Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-45. DOI: 10.1038/nrg3833. View

3.
Rolland T, Tasan M, Charloteaux B, Pevzner S, Zhong Q, Sahni N . A proteome-scale map of the human interactome network. Cell. 2014; 159(5):1212-1226. PMC: 4266588. DOI: 10.1016/j.cell.2014.10.050. View

4.
Rao S, Huntley M, Durand N, Stamenova E, Bochkov I, Robinson J . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159(7):1665-80. PMC: 5635824. DOI: 10.1016/j.cell.2014.11.021. View

5.
de Laat W, Duboule D . Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013; 502(7472):499-506. DOI: 10.1038/nature12753. View