» Articles » PMID: 30071621

Regional Diversity in the Postsynaptic Proteome of the Mouse Brain

Overview
Journal Proteomes
Date 2018 Aug 4
PMID 30071621
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The proteome of the postsynaptic terminal of excitatory synapses comprises over one thousand proteins in vertebrate species and plays a central role in behavior and brain disease. The brain is organized into anatomically distinct regions and whether the synapse proteome differs across these regions is poorly understood. Postsynaptic proteomes were isolated from seven forebrain and hindbrain regions in mice and their composition determined using proteomic mass spectrometry. Seventy-four percent of proteins showed differential expression and each region displayed a unique compositional signature. These signatures correlated with the anatomical divisions of the brain and their embryological origins. Biochemical pathways controlling plasticity and disease, protein interaction networks and individual proteins involved with cognition all showed differential regional expression. Combining proteomic and connectomic data shows that interconnected regions have specific proteome signatures. Diversity in synapse proteome composition is key feature of mouse and human brain structure.

Citing Articles

Src dependency of the regulation of LTP by alternative splicing of exon 5.

Li H, Rajani V, Sengar A, Salter M Philos Trans R Soc Lond B Biol Sci. 2024; 379(1906):20230236.

PMID: 38853562 PMC: 11343231. DOI: 10.1098/rstb.2023.0236.


Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development.

Kaizuka T, Suzuki T, Kishi N, Tamada K, Kilimann M, Ueyama T Nat Commun. 2024; 15(1):2496.

PMID: 38548776 PMC: 10979008. DOI: 10.1038/s41467-024-46529-9.


FAM81A is a postsynaptic protein that regulates the condensation of postsynaptic proteins via liquid-liquid phase separation.

Kaizuka T, Hirouchi T, Saneyoshi T, Shirafuji T, Collins M, Grant S PLoS Biol. 2024; 22(3):e3002006.

PMID: 38452102 PMC: 10919877. DOI: 10.1371/journal.pbio.3002006.


Protein 4.1N Plays a Cell Type-Specific Role in Hippocampal Glutamatergic Synapse Regulation.

Pushkin A, Kay Y, Herring B J Neurosci. 2023; 43(49):8336-8347.

PMID: 37845032 PMC: 10711697. DOI: 10.1523/JNEUROSCI.0185-23.2023.


Synapse-specific diversity of distinct postsynaptic GluN2 subtypes defines transmission strength in spinal lamina I.

Pitcher G, Garzia L, Morrissy A, Taylor M, Salter M Front Synaptic Neurosci. 2023; 15:1197174.

PMID: 37503309 PMC: 10368998. DOI: 10.3389/fnsyn.2023.1197174.


References
1.
Zhu J, Wang J . The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2007; 28(4):469-78. PMC: 11515829. DOI: 10.1007/s10571-007-9236-z. View

2.
Valor L, Charlesworth P, Humphreys L, Anderson C, Grant S . Network activity-independent coordinated gene expression program for synapse assembly. Proc Natl Acad Sci U S A. 2007; 104(11):4658-63. PMC: 1810326. DOI: 10.1073/pnas.0609071104. View

3.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

4.
Abbas A, Yadav P, Yao W, Arbuckle M, Grant S, Caron M . PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci. 2009; 29(22):7124-36. PMC: 2836830. DOI: 10.1523/JNEUROSCI.1090-09.2009. View

5.
Kang H, Kawasawa Y, Cheng F, Zhu Y, Xu X, Li M . Spatio-temporal transcriptome of the human brain. Nature. 2011; 478(7370):483-9. PMC: 3566780. DOI: 10.1038/nature10523. View