» Articles » PMID: 29523686

Inhibition of Strigolactone Receptors by -phenylanthranilic Acid Derivatives: Structural and Functional Insights

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2018 Mar 11
PMID 29523686
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified -phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.

Citing Articles

Effect of histidine covalent modification on strigolactone receptor activation and selectivity.

Chen J, Shukla D Biophys J. 2023; 122(7):1219-1228.

PMID: 36798027 PMC: 10111262. DOI: 10.1016/j.bpj.2023.02.012.


Emerging technologies for the chemical control of root parasitic weeds.

Kawada K, Koyama T, Takahashi I, Nakamura H, Asami T J Pestic Sci. 2022; 47(3):101-110.

PMID: 36479457 PMC: 9706279. DOI: 10.1584/jpestics.D22-045.


Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application.

de Saint Germain A, Clave G, Schouveiler P, Pillot J, Singh A, Chevalier A Front Plant Sci. 2022; 13:887347.

PMID: 35720613 PMC: 9201908. DOI: 10.3389/fpls.2022.887347.


Rapid analysis of strigolactone receptor activity in a mutant.

White A, Mendez J, Khosla A, Nelson D Plant Direct. 2022; 6(3):e389.

PMID: 35355884 PMC: 8948499. DOI: 10.1002/pld3.389.


KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in .

Sepulveda C, Guzman M, Li Q, Villaecija-Aguilar J, Martinez S, Kamran M Proc Natl Acad Sci U S A. 2022; 119(11):e2112820119.

PMID: 35254909 PMC: 8931227. DOI: 10.1073/pnas.2112820119.


References
1.
Akiyama K, Matsuzaki K, Hayashi H . Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005; 435(7043):824-7. DOI: 10.1038/nature03608. View

2.
Jamil M, Kountche B, Haider I, Guo X, Ntui V, Jia K . Methyl phenlactonoates are efficient strigolactone analogs with simple structure. J Exp Bot. 2018; 69(9):2319-2331. PMC: 5913645. DOI: 10.1093/jxb/erx438. View

3.
Jamil M, Charnikhova T, Verstappen F, Bouwmeester H . Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice. Arch Biochem Biophys. 2010; 504(1):123-31. DOI: 10.1016/j.abb.2010.08.005. View

4.
Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, Barry C . Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants. 2016; 2(6):16074. DOI: 10.1038/nplants.2016.74. View

5.
Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z . Strigolactone Signaling in Arabidopsis Regulates Shoot Development by Targeting D53-Like SMXL Repressor Proteins for Ubiquitination and Degradation. Plant Cell. 2015; 27(11):3128-42. PMC: 4682305. DOI: 10.1105/tpc.15.00605. View