» Articles » PMID: 35254909

KARRIKIN UP-REGULATED F-BOX 1 (KUF1) Imposes Negative Feedback Regulation of Karrikin and KAI2 Ligand Metabolism in

Abstract

SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, , that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.

Citing Articles

Strigolactone and karrikin receptors regulate phytohormone biosynthetic and catabolic processes.

Li L, Gupta A, Zhu C, Xu K, Watanabe Y, Tanaka M Plant Cell Rep. 2025; 44(3):60.

PMID: 39982558 DOI: 10.1007/s00299-025-03456-3.


Structural requirements of KAI2 ligands for activation of signal transduction.

Kushihara R, Nakamura A, Takegami K, Seto Y, Kato Y, Dohra H Proc Natl Acad Sci U S A. 2025; 122(8):e2414779122.

PMID: 39977316 PMC: 11874195. DOI: 10.1073/pnas.2414779122.


Evolution of small molecule-mediated regulation of arbuscular mycorrhiza symbiosis.

Delaux P, Gutjahr C Philos Trans R Soc Lond B Biol Sci. 2024; 379(1914):20230369.

PMID: 39343030 PMC: 11439497. DOI: 10.1098/rstb.2023.0369.


Arabidopsis F-box proteins D5BF1 and D5BF2 negatively regulate Agrobacterium-mediated transformation and tumorigenesis.

Hu Q, Li X, Xi W, Xu J, Xu C, Ausin I Mol Plant Pathol. 2024; 25(9):e70006.

PMID: 39267531 PMC: 11393451. DOI: 10.1111/mpp.70006.


Karrikin signalling: impacts on plant development and abiotic stress tolerance.

Kamran M, Melville K, Waters M J Exp Bot. 2023; 75(4):1174-1186.

PMID: 38001035 PMC: 10860534. DOI: 10.1093/jxb/erad476.


References
1.
Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H . Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun. 2018; 9(1):3947. PMC: 6158167. DOI: 10.1038/s41467-018-06452-2. View

2.
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N . Inhibition of shoot branching by new terpenoid plant hormones. Nature. 2008; 455(7210):195-200. DOI: 10.1038/nature07272. View

3.
Choi J, Lee T, Cho J, Servante E, Pucker B, Summers W . The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nat Commun. 2020; 11(1):2114. PMC: 7193599. DOI: 10.1038/s41467-020-16021-1. View

4.
Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R . Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun. 2019; 10(1):191. PMC: 6331613. DOI: 10.1038/s41467-018-08124-7. View

5.
Yao R, Wang F, Ming Z, Du X, Chen L, Wang Y . ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res. 2017; 27(6):838-841. PMC: 5518869. DOI: 10.1038/cr.2017.3. View