» Articles » PMID: 29494575

Exponential Scaling of Single-cell RNA-seq in the Past Decade

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2018 Mar 2
PMID 29494575
Citations 398
Authors
Affiliations
Soon will be listed here.
Abstract

Measurement of the transcriptomes of single cells has been feasible for only a few years, but it has become an extremely popular assay. While many types of analysis can be carried out and various questions can be answered by single-cell RNA-seq, a central focus is the ability to survey the diversity of cell types in a sample. Unbiased and reproducible cataloging of gene expression patterns in distinct cell types requires large numbers of cells. Technological developments and protocol improvements have fueled consistent and exponential increases in the number of cells that can be studied in single-cell RNA-seq analyses. In this Perspective, we highlight the key technological developments that have enabled this growth in the data obtained from single-cell RNA-seq experiments.

Citing Articles

Single-Cell Sequencing: Genomic and Transcriptomic Approaches in Cancer Cell Biology.

Ortega-Batista A, Jaen-Alvarado Y, Moreno-Labrador D, Gomez N, Garcia G, Guerrero E Int J Mol Sci. 2025; 26(5).

PMID: 40076700 PMC: 11901077. DOI: 10.3390/ijms26052074.


Opportunities and challenges in the application of single-cell transcriptomics in plant tissue research.

Luo M, Cao Y, Hong J Physiol Mol Biol Plants. 2025; 31(2):199-209.

PMID: 40070535 PMC: 11890805. DOI: 10.1007/s12298-025-01558-6.


Single-cell lineage tracing techniques in hematology: unraveling the cellular narrative.

Deng L, Li M, Huang X, Zhao X J Transl Med. 2025; 23(1):270.

PMID: 40038725 PMC: 11877926. DOI: 10.1186/s12967-025-06318-4.


LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics.

Zhan Y, Zhang Y, Hu Z, Wang Y, Zhu Z, Du S Genome Med. 2025; 17(1):16.

PMID: 40022231 PMC: 11869467. DOI: 10.1186/s13073-025-01442-8.


Single-Cell RNA-Sequencing Analysis Provides Insights into IgA Nephropathy.

Xia M, Li Y, Liu Y, Dong Z, Liu H Biomolecules. 2025; 15(2).

PMID: 40001494 PMC: 11853383. DOI: 10.3390/biom15020191.


References
1.
Moffitt J, Hao J, Wang G, Chen K, Babcock H, Zhuang X . High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc Natl Acad Sci U S A. 2016; 113(39):11046-51. PMC: 5047202. DOI: 10.1073/pnas.1612826113. View

2.
Klein C, Seidl S, Petat-Dutter K, Offner S, Geigl J, Schmidt-Kittler O . Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol. 2002; 20(4):387-92. DOI: 10.1038/nbt0402-387. View

3.
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno K, Yamada R . An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res. 2006; 34(5):e42. PMC: 1409679. DOI: 10.1093/nar/gkl050. View

4.
Sheng H, Lin P, Nelson P . Analysis of multiple heterogeneous mRNAs in single cells. Anal Biochem. 1994; 222(1):123-30. DOI: 10.1006/abio.1994.1463. View

5.
Costea P, Lundeberg J, Akan P . TagGD: fast and accurate software for DNA Tag generation and demultiplexing. PLoS One. 2013; 8(3):e57521. PMC: 3587622. DOI: 10.1371/journal.pone.0057521. View