» Articles » PMID: 29478411

Observation Weights Unlock Bulk RNA-seq Tools for Zero Inflation and Single-cell Applications

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2018 Feb 27
PMID 29478411
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting performance for scRNA-seq.

Citing Articles

Transcriptional impacts of substance use disorder and HIV on human ventral midbrain neurons and microglia.

Wilson A, Jacobs M, Lambert T, Valada A, Meloni G, Gilmore E bioRxiv. 2025; .

PMID: 39974894 PMC: 11838593. DOI: 10.1101/2025.02.05.636667.


Exosome-based targeted delivery of NF-κB ameliorates age-related neuroinflammation in the aged mouse brain.

Lee C, Jang S, Lim J, Park H, Ahn S, Park S Exp Mol Med. 2025; 57(1):235-248.

PMID: 39833561 PMC: 11799301. DOI: 10.1038/s12276-024-01388-8.


Spatial transcriptomics in bone mechanomics: Exploring the mechanoregulation of fracture healing in the era of spatial omics.

Mathavan N, Singh A, Marques F, Gunther D, Kuhn G, Wehrle E Sci Adv. 2025; 11(1):eadp8496.

PMID: 39742473 PMC: 11694773. DOI: 10.1126/sciadv.adp8496.


Review and revamp of compositional data transformation: A new framework combining proportion conversion and contrast transformation.

Zhang Y, Schluter J, Zhang L, Cao X, Jenq R, Feng H Comput Struct Biotechnol J. 2024; 23:4088-4107.

PMID: 39624165 PMC: 11609487. DOI: 10.1016/j.csbj.2024.11.003.


scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq.

Chen L, Guo Z, Deng T, Wu H Genome Biol. 2024; 25(1):269.

PMID: 39402623 PMC: 11472465. DOI: 10.1186/s13059-024-03410-8.


References
1.
Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios A . Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017; 8(1):1627. PMC: 5696379. DOI: 10.1038/s41467-017-01560-x. View

2.
Soneson C, Robinson M . Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018; 15(4):255-261. DOI: 10.1038/nmeth.4612. View

3.
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R . Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411-420. PMC: 6700744. DOI: 10.1038/nbt.4096. View

4.
Lun A, McCarthy D, Marioni J . A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 2016; 5:2122. PMC: 5112579. DOI: 10.12688/f1000research.9501.2. View

5.
Raj A, van Oudenaarden A . Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008; 135(2):216-26. PMC: 3118044. DOI: 10.1016/j.cell.2008.09.050. View