» Articles » PMID: 29325029

Neuroconductor: an R Platform for Medical Imaging Analysis

Overview
Journal Biostatistics
Specialty Public Health
Date 2018 Jan 12
PMID 29325029
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Neuroconductor (https://neuroconductor.org) is an open-source platform for rapid testing and dissemination of reproducible computational imaging software. The goals of the project are to: (i) provide a centralized repository of R software dedicated to image analysis, (ii) disseminate software updates quickly, (iii) train a large, diverse community of scientists using detailed tutorials and short courses, (iv) increase software quality via automatic and manual quality controls, and (v) promote reproducibility of image data analysis. Based on the programming language R (https://www.r-project.org/), Neuroconductor starts with 51 inter-operable packages that cover multiple areas of imaging including visualization, data processing and storage, and statistical inference. Neuroconductor accepts new R package submissions, which are subject to a formal review and continuous automated testing. We provide a description of the purpose of Neuroconductor and the user and developer experience.

Citing Articles

Automated segmentation of ventricular volumes and subarachnoid hemorrhage from computed tomography images: Evaluation of a rule-based pipeline approach.

Butler M, Shah P, Ozgen B, Michals E, Geraghty J, Testai F Neuroradiol J. 2024; 38(1):30-43.

PMID: 38869365 PMC: 11571338. DOI: 10.1177/19714009241260791.


Radiofrequency ablation of lung metastases of colorectal cancer: could early radiomics analysis of the ablation zone help detect local tumor progression?.

Crombe A, Palussiere J, Catena V, Cazayus M, Fonck M, Bechade D Br J Radiol. 2023; 96(1146):20201371.

PMID: 37066833 PMC: 10230393. DOI: 10.1259/bjr.20201371.


T /T ratio from 3T MRI improves multiple sclerosis cortical lesion contrast.

Manning A, Beck E, Schindler M, Nair G, Clark K, Parvathaneni P J Neuroimaging. 2023; 33(3):434-445.

PMID: 36715449 PMC: 10175128. DOI: 10.1111/jon.13088.


Lessons learned: A neuroimaging research center's transition to open and reproducible science.

Bush K, Calvert M, Kilts C Front Big Data. 2022; 5:988084.

PMID: 36105538 PMC: 9464934. DOI: 10.3389/fdata.2022.988084.


Harmonisation of scanner-dependent contrast variations in magnetic resonance imaging for radiation oncology, using style-blind auto-encoders.

Fatania K, Clark A, Frood R, Scarsbrook A, Al-Qaisieh B, Currie S Phys Imaging Radiat Oncol. 2022; 22:115-122.

PMID: 35619643 PMC: 9127401. DOI: 10.1016/j.phro.2022.05.005.


References
1.
Le Bihan D, Mangin J, Poupon C, Clark C, Pappata S, Molko N . Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001; 13(4):534-46. DOI: 10.1002/jmri.1076. View

2.
Wang H, Yushkevich P . Multi-atlas segmentation with joint label fusion and corrective learning-an open source implementation. Front Neuroinform. 2013; 7:27. PMC: 3837555. DOI: 10.3389/fninf.2013.00027. View

3.
Muschelli J, Sweeney E, Lindquist M, Crainiceanu C . fslr: Connecting the FSL Software with R. R J. 2016; 7(1):163-175. PMC: 4911193. View

4.
ODonnell L, Westin C . An introduction to diffusion tensor image analysis. Neurosurg Clin N Am. 2011; 22(2):185-96, viii. PMC: 3163395. DOI: 10.1016/j.nec.2010.12.004. View

5.
Schmid V, Whitcher B, Padhani A, Taylor N, Yang G . Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Med Imaging. 2006; 25(12):1627-36. DOI: 10.1109/tmi.2006.884210. View