» Articles » PMID: 21373993

An Open Source Multivariate Framework for N-tissue Segmentation with Evaluation on Public Data

Overview
Date 2011 Mar 5
PMID 21373993
Citations 288
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs ( http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.

Citing Articles

Multi-atlas multi-modality morphometry analysis of the South Texas Alzheimer's Disease Research Center postmortem repository.

Honnorat N, Mojtabai M, Li K, Li J, Martinez D, Rashid T Neuroimage Clin. 2025; 45:103752.

PMID: 39987858 PMC: 11905842. DOI: 10.1016/j.nicl.2025.103752.


Twenty Years of Neuroinformatics: A Bibliometric Analysis.

Guillen-Pujadas M, Alaminos D, Vizuete-Luciano E, Merigo J, Van Horn J Neuroinformatics. 2025; 23(1):7.

PMID: 39812741 PMC: 11735507. DOI: 10.1007/s12021-024-09712-3.


A lifespan-generalizable skull-stripping model for magnetic resonance images that leverages prior knowledge from brain atlases.

Wang L, Sun Y, Seidlitz J, Bethlehem R, Alexander-Bloch A, Dorfschmidt L Nat Biomed Eng. 2025; .

PMID: 39779813 DOI: 10.1038/s41551-024-01337-w.


Noninvasive blood-brain barrier integrity mapping in patients with high-grade glioma and metastasis by multi-echo time-encoded arterial spin labeling.

Hoffmann G, Preibisch C, Gunther M, Mahroo A, van Osch M, Vaclavu L Magn Reson Med. 2025; 93(5):2086-2098.

PMID: 39777739 PMC: 11893035. DOI: 10.1002/mrm.30415.


Multi-domain predictors of grip strength differentiate individuals with and without alcohol use disorder.

Paschali M, Zhao Q, Sassoon S, Pfefferbaum A, Sullivan E, Pohl K Addict Biol. 2024; 29(11):e70007.

PMID: 39532141 PMC: 11556900. DOI: 10.1111/adb.70007.


References
1.
Nakamura K, Fisher E . Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage. 2008; 44(3):769-76. PMC: 3001325. DOI: 10.1016/j.neuroimage.2008.09.059. View

2.
Kikinis R, Shenton M, Gerig G, Martin J, Anderson M, Metcalf D . Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. J Magn Reson Imaging. 1992; 2(6):619-29. DOI: 10.1002/jmri.1880020603. View

3.
Sled J, Zijdenbos A, Evans A . A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998; 17(1):87-97. DOI: 10.1109/42.668698. View

4.
Marroquin J, Vemuri B, Botello S, Calderon F, Fernandez-Bouzas A . An accurate and efficient bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging. 2002; 21(8):934-45. DOI: 10.1109/TMI.2002.803119. View

5.
Dale A, Fischl B, Sereno M . Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999; 9(2):179-94. DOI: 10.1006/nimg.1998.0395. View