» Articles » PMID: 29268762

Methylation Patterns in Serum DNA for Early Identification of Disseminated Breast Cancer

Abstract

Background: Monitoring treatment and early detection of fatal breast cancer (BC) remains a major unmet need. Aberrant circulating DNA methylation (DNAme) patterns are likely to provide a highly specific cancer signal. We hypothesized that cell-free DNAme markers could indicate disseminated breast cancer, even in the presence of substantial quantities of background DNA.

Methods: We used reduced representation bisulfite sequencing (RRBS) of 31 tissues and established serum assays based on ultra-high coverage bisulfite sequencing in two independent prospective serum sets (n = 110). The clinical use of one specific region, EFC#93, was validated in 419 patients (in both pre- and post-adjuvant chemotherapy samples) from SUCCESS (Simultaneous Study of Gemcitabine-Docetaxel Combination adjuvant treatment, as well as Extended Bisphosphonate and Surveillance-Trial) and 925 women (pre-diagnosis) from the UKCTOCS (UK Collaborative Trial of Ovarian Cancer Screening) population cohort, with overall survival and occurrence of incident breast cancer (which will or will not lead to death), respectively, as primary endpoints.

Results: A total of 18 BC specific DNAme patterns were discovered in tissue, of which the top six were further tested in serum. The best candidate, EFC#93, was validated for clinical use. EFC#93 was an independent poor prognostic marker in pre-chemotherapy samples (hazard ratio [HR] for death = 7.689) and superior to circulating tumor cells (CTCs) (HR for death = 5.681). More than 70% of patients with both CTCs and EFC#93 serum DNAme positivity in their pre-chemotherapy samples relapsed within five years. EFC#93-positive disseminated disease in post-chemotherapy samples seems to respond to anti-hormonal treatment. The presence of EFC#93 serum DNAme identified 42.9% and 25% of women who were diagnosed with a fatal BC within 3-6 and 6-12 months of sample donation, respectively, with a specificity of 88%. The sensitivity with respect to detecting fatal BC was ~ 4-fold higher compared to non-fatal BC.

Conclusions: Detection of EFC#93 serum DNAme patterns offers a new tool for early diagnosis and management of disseminated breast cancers. Clinical trials are required to assess whether EFC#93-positive women in the absence of radiological detectable breast cancers will benefit from anti-hormonal treatment before the breast lesions become clinically apparent.

Citing Articles

Validation of blood-based detection of breast cancer highlights importance for cross-population validation.

Theeuwes B, Ambatipudi S, Herceg Z, Herzog C, Widschwendter M Nat Commun. 2025; 16(1):2164.

PMID: 40044645 PMC: 11882885. DOI: 10.1038/s41467-025-57265-z.


Global DNA methylomes reveal oncogenic-associated 5-hydroxylmethylated cytosine (5hmC) signatures in the cell-free DNA of cancer patients.

Rech G, Lau A, Goldfeder R, Maurya R, Danilov A, Wei C medRxiv. 2025; .

PMID: 39867387 PMC: 11759829. DOI: 10.1101/2025.01.09.25320283.


Differential methylation of circulating free DNA assessed through cfMeDiP as a new tool for breast cancer diagnosis and detection of BRCA1/2 mutation.

Grisolia P, Tufano R, Iannarone C, De Falco A, Carlino F, Graziano C J Transl Med. 2024; 22(1):938.

PMID: 39407254 PMC: 11476115. DOI: 10.1186/s12967-024-05734-2.


Circulating tumor DNA: from discovery to clinical application in breast cancer.

Xu J, Gao H, Guan X, Meng J, Ding S, Long Q Front Immunol. 2024; 15:1355887.

PMID: 38745646 PMC: 11091288. DOI: 10.3389/fimmu.2024.1355887.


hypomethylation as a biomarker for distinguishing benign and malignant breast tumours.

Zang Z, Yin Y, Liu C, Zhu Q, Huang X, Li H Epigenetics. 2024; 19(1):2352683.

PMID: 38723244 PMC: 11086039. DOI: 10.1080/15592294.2024.2352683.


References
1.
Lucci A, Hall C, Lodhi A, Bhattacharyya A, Anderson A, Xiao L . Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2012; 13(7):688-95. DOI: 10.1016/S1470-2045(12)70209-7. View

2.
Teschendorff A, Gao Y, Jones A, Ruebner M, Beckmann M, Wachter D . DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat Commun. 2016; 7:10478. PMC: 4740178. DOI: 10.1038/ncomms10478. View

3.
Wang Y, Springer S, Mulvey C, Silliman N, Schaefer J, Sausen M . Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med. 2015; 7(293):293ra104. PMC: 4587492. DOI: 10.1126/scitranslmed.aaa8507. View

4.
Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T . Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst. 2014; 106(5). PMC: 4112925. DOI: 10.1093/jnci/dju066. View

5.
Newcombe R . Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998; 17(8):857-72. DOI: 10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e. View