Phenotypic Diversity and Temporal Variability in a Bacterial Signaling Network Revealed by Single-cell FRET
Authors
Affiliations
We present single-cell FRET measurements in the chemotaxis system that reveal pervasive signaling variability, both across cells in isogenic populations and within individual cells over time. We quantify cell-to-cell variability of adaptation, ligand response, as well as steady-state output level, and analyze the role of network design in shaping this diversity from gene expression noise. In the absence of changes in gene expression, we find that single cells demonstrate strong temporal fluctuations. We provide evidence that such signaling noise can arise from at least two sources: (i) stochastic activities of adaptation enzymes, and (ii) receptor-kinase dynamics in the absence of adaptation. We demonstrate that under certain conditions, (ii) can generate giant fluctuations that drive signaling activity of the entire cell into a stochastic two-state switching regime. Our findings underscore the importance of molecular noise, arising not only in gene expression but also in protein networks.
Nongenetic adaptation by collective migration.
Vo L, Avgidis F, Mattingly H, Edmonds K, Burger I, Balasubramanian R Proc Natl Acad Sci U S A. 2025; 122(8):e2423774122.
PMID: 39970001 PMC: 11874451. DOI: 10.1073/pnas.2423774122.
Hathcock D, Yu Q, Tu Y Nat Commun. 2024; 15(1):8892.
PMID: 39406715 PMC: 11480488. DOI: 10.1038/s41467-024-52799-0.
CheB localizes to polar receptor arrays during repellent adaptation.
Fukuoka H, Nishitani K, Deguchi T, Oshima T, Uchida Y, Hamamoto T Sci Adv. 2024; 10(38):eadp5636.
PMID: 39303042 PMC: 11414734. DOI: 10.1126/sciadv.adp5636.
do not count single molecules.
Mattingly H, Kamino K, Ong J, Kottou R, Emonet T, Machta B bioRxiv. 2024; .
PMID: 39026702 PMC: 11257612. DOI: 10.1101/2024.07.09.602750.
Signal integration and adaptive sensory diversity tuning in Escherichia coli chemotaxis.
Moore J, Kamino K, Kottou R, Shimizu T, Emonet T Cell Syst. 2024; 15(7):628-638.e8.
PMID: 38981486 PMC: 11307269. DOI: 10.1016/j.cels.2024.06.003.