» Articles » PMID: 29123071

SAMTOR is an -adenosylmethionine Sensor for the MTORC1 Pathway

Overview
Journal Science
Specialty Science
Date 2017 Nov 11
PMID 29123071
Citations 271
Authors
Affiliations
Soon will be listed here.
Abstract

mTOR complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple environmental cues. Nutrients signal via the Rag guanosine triphosphatases (GTPases) to promote the localization of mTORC1 to the lysosomal surface, its site of activation. We identified SAMTOR, a previously uncharacterized protein, which inhibits mTORC1 signaling by interacting with GATOR1, the GTPase activating protein (GAP) for RagA/B. We found that the methyl donor -adenosylmethionine (SAM) disrupts the SAMTOR-GATOR1 complex by binding directly to SAMTOR with a dissociation constant of approximately 7 μM. In cells, methionine starvation reduces SAM levels below this dissociation constant and promotes the association of SAMTOR with GATOR1, thereby inhibiting mTORC1 signaling in a SAMTOR-dependent fashion. Methionine-induced activation of mTORC1 requires the SAM binding capacity of SAMTOR. Thus, SAMTOR is a SAM sensor that links methionine and one-carbon metabolism to mTORC1 signaling.

Citing Articles

Citrulline regulates macrophage metabolism and inflammation to counter aging in mice.

Xie Z, Lin M, Xing B, Wang H, Zhang H, Cai Z Sci Adv. 2025; 11(10):eads4957.

PMID: 40053596 PMC: 11887811. DOI: 10.1126/sciadv.ads4957.


Pectin-Zein-IPA nanoparticles promote functional recovery and alleviate neuroinflammation after spinal cord injury.

Chen X, Wang B, Al Mamun A, Du K, Wang S, Hu Q J Nanobiotechnology. 2025; 23(1):152.

PMID: 40016738 PMC: 11869623. DOI: 10.1186/s12951-025-03224-1.


Determination of Nutrient Ligand-Sensor Binding Affinity.

Gu X Methods Mol Biol. 2025; 2882:163-178.

PMID: 39992509 DOI: 10.1007/978-1-0716-4284-9_8.


Serum metabolomics analysis reveals a novel association between maternal metabolism and fetal survival in sows fed diets containing differing methionine levels and sources.

Zhou R, Zhe L, Mercier Y, Hu L, Li R, Chen H Anim Nutr. 2025; 20:145-157.

PMID: 39967700 PMC: 11833788. DOI: 10.1016/j.aninu.2024.07.008.


Non-dikarya fungi share the TORC1 pathway with animals, not with Saccharomyces cerevisiae.

Barua D, Plecha M, Muszewska A Sci Rep. 2025; 15(1):5926.

PMID: 39966606 PMC: 11836306. DOI: 10.1038/s41598-025-89635-4.


References
1.
Wyant G, Abu-Remaileh M, Wolfson R, Chen W, Freinkman E, Danai L . mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell. 2017; 171(3):642-654.e12. PMC: 5704964. DOI: 10.1016/j.cell.2017.09.046. View

2.
Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992; 89(12):5547-51. PMC: 49329. DOI: 10.1073/pnas.89.12.5547. View

3.
Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim Y, Akopiants K . Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014; 9(4):1281-91. PMC: 4303546. DOI: 10.1016/j.celrep.2014.10.019. View

4.
Sharma S, Watzinger P, Kotter P, Entian K . Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2013; 41(10):5428-43. PMC: 3664796. DOI: 10.1093/nar/gkt195. View

5.
Saxton R, Knockenhauer K, Wolfson R, Chantranupong L, Pacold M, Wang T . Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 2015; 351(6268):53-8. PMC: 4698039. DOI: 10.1126/science.aad2087. View