6.
Shojaei Saadi H, Gagne D, Fournier E, Baldoceda Baldeon L, Sirard M, Robert C
. Responses of bovine early embryos to S-adenosyl methionine supplementation in culture. Epigenomics. 2016; 8(8):1039-60.
DOI: 10.2217/epi-2016-0022.
View
7.
Estrada-Cortes E, Negron-Perez V, Tribulo P, Zenobi M, Staples C, Hansen P
. Effects of choline on the phenotype of the cultured bovine preimplantation embryo. J Dairy Sci. 2020; 103(11):10784-10796.
DOI: 10.3168/jds.2020-18598.
View
8.
Gu X, Orozco J, Saxton R, Condon K, Liu G, Krawczyk P
. SAMTOR is an -adenosylmethionine sensor for the mTORC1 pathway. Science. 2017; 358(6364):813-818.
PMC: 5747364.
DOI: 10.1126/science.aao3265.
View
9.
Clare C, Pestinger V, Kwong W, Tutt D, Xu J, Byrne H
. Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci. 2021; 22(4).
PMC: 7918761.
DOI: 10.3390/ijms22041838.
View
10.
Arshad U, Zenobi M, Staples C, Santos J
. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J Dairy Sci. 2019; 103(1):282-300.
DOI: 10.3168/jds.2019-16842.
View
11.
Hansen P, Dobbs K, Denicol A, Siqueira L
. Sex and the preimplantation embryo: implications of sexual dimorphism in the preimplantation period for maternal programming of embryonic development. Cell Tissue Res. 2015; 363(1):237-247.
PMC: 4703572.
DOI: 10.1007/s00441-015-2287-4.
View
12.
Tribulo P, Balzano-Nogueira L, Conesa A, Siqueira L, Hansen P
. Changes in the uterine metabolome of the cow during the first 7 days after estrus. Mol Reprod Dev. 2018; 86(1):75-87.
PMC: 6322963.
DOI: 10.1002/mrd.23082.
View
13.
Saini S, Ansari S, Sharma V, Saugandhika S, Kumar S, Malakar D
. Folate receptor-1 is vital for developmental competence of goat embryos. Reprod Domest Anim. 2022; 57(5):541-549.
DOI: 10.1111/rda.14092.
View
14.
Ikeda S, Sugimoto M, Kume S
. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev. 2011; 58(1):91-7.
DOI: 10.1262/jrd.11-096h.
View
15.
Estrada-Cortes E, Ortiz W, Rabaglino M, Block J, Rae O, Jannaman E
. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. FASEB J. 2021; 35(10):e21926.
DOI: 10.1096/fj.202100991R.
View
16.
France T, Myers W, Javaid A, Frost I, McFadden J
. Changes in plasma and milk choline metabolite concentrations in response to the provision of various rumen-protected choline prototypes in lactating dairy cows. J Dairy Sci. 2022; 105(12):9509-9522.
DOI: 10.3168/jds.2021-21615.
View
17.
Ikeda S, Kawahara-Miki R, Iwata H, Sugimoto M, Kume S
. Role of methionine adenosyltransferase 2A in bovine preimplantation development and its associated genomic regions. Sci Rep. 2017; 7(1):3800.
PMC: 5476596.
DOI: 10.1038/s41598-017-04003-1.
View
18.
Sinclair K, Allegrucci C, Singh R, Gardner D, Sebastian S, Bispham J
. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 2007; 104(49):19351-6.
PMC: 2148293.
DOI: 10.1073/pnas.0707258104.
View
19.
Zhu L, Marjani S, Jiang Z
. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet. 2021; 12:557934.
PMC: 7966815.
DOI: 10.3389/fgene.2021.557934.
View
20.
Tribulo P, Rivera R, Ortega Obando M, Jannaman E, Hansen P
. Production and Culture of the Bovine Embryo. Methods Mol Biol. 2019; 2006:115-129.
DOI: 10.1007/978-1-4939-9566-0_8.
View