» Articles » PMID: 18604198

Regulation of TORC1 by Rag GTPases in Nutrient Response

Overview
Journal Nat Cell Biol
Specialty Cell Biology
Date 2008 Jul 8
PMID 18604198
Citations 756
Authors
Affiliations
Soon will be listed here.
Abstract

TORC1 (target of rapamycin complex 1) has a crucial role in the regulation of cell growth and size. A wide range of signals, including amino acids, is known to activate TORC1. Here, we report the identification of Rag GTPases as activators of TORC1 in response to amino acid signals. Knockdown of Rag gene expression suppressed the stimulatory effect of amino acids on TORC1 in Drosophila melanogaster S2 cells. Expression of constitutively active (GTP-bound) Rag in mammalian cells activated TORC1 in the absence of amino acids, whereas expression of dominant-negative Rag blocked the stimulatory effects of amino acids on TORC1. Genetic studies in Drosophila also show that Rag GTPases regulate cell growth, autophagy and animal viability during starvation. Our studies establish a function of Rag GTPases in TORC1 activation in response to amino acid signals.

Citing Articles

Retinoic Acid Promotes Neuronal Differentiation While Increasing Proteins and Organelles Related to Autophagy.

Lazzeri G, Lenzi P, Signorini G, Raffaelli S, Giammattei E, Natale G Int J Mol Sci. 2025; 26(4).

PMID: 40004155 PMC: 11855701. DOI: 10.3390/ijms26041691.


Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease.

Kiraly S, Stanley J, Eden E Antioxidants (Basel). 2025; 14(2).

PMID: 40002312 PMC: 11852311. DOI: 10.3390/antiox14020125.


Determination of Nutrient Ligand-Sensor Binding Affinity.

Gu X Methods Mol Biol. 2025; 2882:163-178.

PMID: 39992509 DOI: 10.1007/978-1-0716-4284-9_8.


Energy metabolism in health and diseases.

Liu H, Wang S, Wang J, Guo X, Song Y, Fu K Signal Transduct Target Ther. 2025; 10(1):69.

PMID: 39966374 PMC: 11836267. DOI: 10.1038/s41392-025-02141-x.


STAT6 mutations compensate for CREBBP mutations and hyperactivate IL4/STAT6/RRAGD/mTOR signaling in follicular lymphoma.

Shao Q, Bedi K, Malek I, Shedden K, Malek S Leukemia. 2025; .

PMID: 39910284 DOI: 10.1038/s41375-025-02525-6.


References
1.
Thomas G . The S6 kinase signaling pathway in the control of development and growth. Biol Res. 2002; 35(2):305-13. DOI: 10.4067/s0716-97602002000200022. View

2.
Shigemitsu K, Tsujishita Y, Hara K, NANAHOSHI M, Avruch J, Yonezawa K . Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem. 1999; 274(2):1058-65. DOI: 10.1074/jbc.274.2.1058. View

3.
Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E . Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000; 14(21):2689-94. PMC: 317036. DOI: 10.1101/gad.845700. View

4.
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg M, Hall A . Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004; 6(11):1122-8. DOI: 10.1038/ncb1183. View

5.
Potter C, Pedraza L, Xu T . Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002; 4(9):658-65. DOI: 10.1038/ncb840. View