» Articles » PMID: 29120648

The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2017 Nov 10
PMID 29120648
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log to 6 log for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.

Citing Articles

Overview of the Design and Application of Photothermal Immunoassays.

Gao F, Wu Y, Gan C, Hou Y, Deng D, Yi X Sensors (Basel). 2024; 24(19).

PMID: 39409498 PMC: 11479306. DOI: 10.3390/s24196458.


Lateral flow assay sensitivity and signal enhancement via laser µ-machined constrains in nitrocellulose membrane.

Khatmi G, Klinavicius T, Simanavicius M, Silimavicius L, Tamuleviciene A, Rimkute A Sci Rep. 2024; 14(1):22936.

PMID: 39358489 PMC: 11446913. DOI: 10.1038/s41598-024-74407-3.


Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities.

Shao S, Wang X, Sorial C, Sun X, Xia X Adv Healthc Mater. 2024; :e2401677.

PMID: 39108051 PMC: 11799360. DOI: 10.1002/adhm.202401677.


Glowstick-inspired smartphone-readable reporters for sensitive, multiplexed lateral flow immunoassays.

Brosamer K, Kourentzi K, Willson R, Vu B Commun Eng. 2024; 2.

PMID: 38586601 PMC: 10955955. DOI: 10.1038/s44172-023-00075-2.


Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays.

Sarathkumar E, Anjana R, Jayasree R Beilstein J Nanotechnol. 2023; 14:988-1003.

PMID: 37822722 PMC: 10562646. DOI: 10.3762/bjnano.14.82.


References
1.
Bissonnette L, Bergeron M . Diagnosing infections--current and anticipated technologies for point-of-care diagnostics and home-based testing. Clin Microbiol Infect. 2010; 16(8):1044-53. DOI: 10.1111/j.1469-0691.2010.03282.x. View

2.
Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J . A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron. 2015; 78:530-537. DOI: 10.1016/j.bios.2015.11.099. View

3.
Mosley G, Nguyen P, Wu B, Kamei D . Development of quantitative radioactive methodologies on paper to determine important lateral-flow immunoassay parameters. Lab Chip. 2016; 16(15):2871-81. DOI: 10.1039/c6lc00518g. View

4.
Moghadam B, Connelly K, Posner J . Two orders of magnitude improvement in detection limit of lateral flow assays using isotachophoresis. Anal Chem. 2014; 87(2):1009-17. DOI: 10.1021/ac504552r. View

5.
Qin Z, Chan W, Boulware D, Akkin T, Butler E, Bischof J . Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed Engl. 2012; 51(18):4358-61. PMC: 3337364. DOI: 10.1002/anie.201200997. View