» Articles » PMID: 29025772

Impaired HLA Class I Antigen Processing and Presentation As a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer

Abstract

Mechanisms of acquired resistance to immune checkpoint inhibitors (ICI) are poorly understood. We leveraged a collection of 14 ICI-resistant lung cancer samples to investigate whether alterations in genes encoding HLA Class I antigen processing and presentation machinery (APM) components or interferon signaling play a role in acquired resistance to PD-1 or PD-L1 antagonistic antibodies. Recurrent mutations or copy-number changes were not detected in our cohort. In one case, we found acquired homozygous loss of that caused lack of cell-surface HLA Class I expression in the tumor and a matched patient-derived xenograft (PDX). Downregulation of B2M was also found in two additional PDXs established from ICI-resistant tumors. CRISPR-mediated knockout of in an immunocompetent lung cancer mouse model conferred resistance to PD-1 blockade , proving its role in resistance to ICIs. These results indicate that HLA Class I APM disruption can mediate escape from ICIs in lung cancer. As programmed death 1 axis inhibitors are becoming more established in standard treatment algorithms for diverse malignancies, acquired resistance to these therapies is increasingly being encountered. Here, we found that defective antigen processing and presentation can serve as a mechanism of such resistance in lung cancer. .

Citing Articles

Advances in Immunotherapy in Hepatocellular Carcinoma.

Bloom M, Podder S, Dang H, Lin D Int J Mol Sci. 2025; 26(5).

PMID: 40076561 PMC: 11900920. DOI: 10.3390/ijms26051936.


Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy.

Almawash S Cancers (Basel). 2025; 17(5).

PMID: 40075727 PMC: 11899125. DOI: 10.3390/cancers17050880.


Multiple mechanisms and applications of tertiary lymphoid structures and immune checkpoint blockade.

Li Z, Liu S, Liu D, Yang K, Xiong J, Fang Z J Exp Clin Cancer Res. 2025; 44(1):84.

PMID: 40038799 PMC: 11881293. DOI: 10.1186/s13046-025-03318-6.


Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy.

Ge Y, Zhou Q, Pan F, Wang R Int J Nanomedicine. 2025; 20:2371-2394.

PMID: 40027868 PMC: 11871910. DOI: 10.2147/IJN.S505539.


Genomic alterations and transcriptional phenotypes in circulating free DNA and matched metastatic tumor.

Takahashi N, Pongor L, Agrawal S, Shtumpf M, Gurjar A, Rajapakse V Genome Med. 2025; 17(1):15.

PMID: 40001151 PMC: 11863907. DOI: 10.1186/s13073-025-01438-4.


References
1.
Borghaei H, Paz-Ares L, Horn L, Spigel D, Steins M, Ready N . Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(17):1627-39. PMC: 5705936. DOI: 10.1056/NEJMoa1507643. View

2.
Chang C, Campoli M, Ferrone S . Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res. 2005; 93:189-234. DOI: 10.1016/S0065-230X(05)93006-6. View

3.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

4.
Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams E . Xenome--a tool for classifying reads from xenograft samples. Bioinformatics. 2012; 28(12):i172-8. PMC: 3371868. DOI: 10.1093/bioinformatics/bts236. View

5.
Zou W, Wolchok J, Chen L . PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016; 8(328):328rv4. PMC: 4859220. DOI: 10.1126/scitranslmed.aad7118. View