» Articles » PMID: 28967888

Critical Assessment of Metagenome Interpretation-a Benchmark of Metagenomics Software

Abstract

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

Citing Articles

Semisynthetic simulation for microbiome data analysis.

Sankaran K, Kodikara S, Li J, Le Cao K Brief Bioinform. 2025; 26(1).

PMID: 39927858 PMC: 11808806. DOI: 10.1093/bib/bbaf051.


Community assembly modeling of microbial evolution within Barrett's esophagus and esophageal adenocarcinoma.

Guccione C, Sfiligoi I, Gonzalez A, Shaffer J, Kazachkova M, Weng Y bioRxiv. 2025; .

PMID: 39868296 PMC: 11760701. DOI: 10.1101/2025.01.14.633020.


Taming large-scale genomic analyses via sparsified genomics.

Alser M, Eudine J, Mutlu O Nat Commun. 2025; 16(1):876.

PMID: 39837860 PMC: 11751491. DOI: 10.1038/s41467-024-55762-1.


Integrative genomics would strengthen AMR understanding through ONE health approach.

Liu C, Pandey R Heliyon. 2025; 10(14):e34719.

PMID: 39816336 PMC: 11734142. DOI: 10.1016/j.heliyon.2024.e34719.


A sensitivity analysis of methodological variables associated with microbiome measurements.

Forry S, Servetas S, Dootz J, Hunter M, Kralj J, Filliben J Microbiol Spectr. 2025; 13(2):e0069624.

PMID: 39807898 PMC: 11792480. DOI: 10.1128/spectrum.00696-24.


References
1.
Coil D, Jospin G, Darling A . A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2014; 31(4):587-9. DOI: 10.1093/bioinformatics/btu661. View

2.
Wu Y, Simmons B, Singer S . MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2015; 32(4):605-7. DOI: 10.1093/bioinformatics/btv638. View

3.
Bendall M, Stevens S, Chan L, Malfatti S, Schwientek P, Tremblay J . Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016; 10(7):1589-601. PMC: 4918448. DOI: 10.1038/ismej.2015.241. View

4.
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C . Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012; 9(8):811-4. PMC: 3443552. DOI: 10.1038/nmeth.2066. View

5.
Kashtan N, Roggensack S, Rodrigue S, Thompson J, Biller S, Coe A . Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014; 344(6182):416-20. DOI: 10.1126/science.1248575. View