» Articles » PMID: 28962392

Short-term Changes in Intracellular ROS Localisation After the Silver Nanoparticles Exposure Depending on Particle Size

Overview
Journal Toxicol Rep
Date 2017 Oct 1
PMID 28962392
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Silver nanoparticles (AgNPs) induce the production of reactive oxygen species (ROS) and apoptosis. These effects are enhanced by smaller particles. Using live-cell imaging, we show that AgNPs induced ROS production rapidly in a size-dependent manner after exposure of cells to 70-nm and 1-nm AgNPs (AgNPs-70, AgNPs-1), but not AgNO. Exposure of cells to 5 μg/mL each of AgNPs-70, AgNPs-1 or AgNO for 1 h decreased the cell viability by approximately 40%, 100% and 20%, respectively. ROS were rapidly induced after 5 and 60 min by AgNPs-1 and AgNPs-70, respectively, whereas AgNO had no detectable effect. ROS production detected using the reporter dichlorodihydrofluorescein was observed in whole cells and mitochondria 5 and 60 min after exposure to AgNPs-1. The present study is the first, to our knowledge, to report the temporal expression and intracellular localisation of ROS induced by AgNPs.

Citing Articles

Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties.

Duman H, Eker F, Akdasci E, Witkowska A, Bechelany M, Karav S Nanomaterials (Basel). 2024; 14(18).

PMID: 39330683 PMC: 11434896. DOI: 10.3390/nano14181527.


Pharmacological Insights: Mitochondrial ROS Generation by FNC (Azvudine) in Dalton's Lymphoma Cells Revealed by Super Resolution Imaging.

Kumar N, Delu V, Ulasov I, Kumar S, Singh R, Kumar S Cell Biochem Biophys. 2024; 82(2):873-883.

PMID: 38483755 DOI: 10.1007/s12013-024-01238-4.


The role of pH-induced tautomerism of polyvinylpyrrolidone on the size, stability, and antioxidant and antibacterial activities of silver nanoparticles synthesized using microwave radiation.

Ismillayli N, Suprapto S, Santoso E, Nugraha R, Holilah H, Bahruji H RSC Adv. 2024; 14(7):4509-4517.

PMID: 38312717 PMC: 10836328. DOI: 10.1039/d3ra07113h.


Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance.

Kaiser K, Delattre V, Frost V, Buck G, Phu J, Fernandez T Antibiotics (Basel). 2023; 12(8).

PMID: 37627684 PMC: 10451389. DOI: 10.3390/antibiotics12081264.


Suppression of sonic hedgehog pathway-based proliferation in glioblastoma cells by small-size silver nanoparticles in vitro.

Skora B, Masicz M, Nowak P, Lachowska J, Soltysek P, Biskup J Arch Toxicol. 2023; 97(9):2385-2398.

PMID: 37407723 PMC: 10404180. DOI: 10.1007/s00204-023-03552-x.


References
1.
Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S . Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol. 2011; 8:1. PMC: 3030505. DOI: 10.1186/1743-8977-8-1. View

2.
Bandmann V, Muller J, Kohler T, Homann U . Uptake of fluorescent nano beads into BY2-cells involves clathrin-dependent and clathrin-independent endocytosis. FEBS Lett. 2012; 586(20):3626-32. DOI: 10.1016/j.febslet.2012.08.008. View

3.
Chrastina A, Schnitzer J . Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomedicine. 2010; 5:653-9. PMC: 2939711. DOI: 10.2147/IJN.S11677. View

4.
Piao M, Kang K, Lee I, Kim H, Kim S, Choi J . Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2010; 201(1):92-100. DOI: 10.1016/j.toxlet.2010.12.010. View

5.
Chen K, Kirber M, Xiao H, Yang Y, Keaney Jr J . Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008; 181(7):1129-39. PMC: 2442210. DOI: 10.1083/jcb.200709049. View