» Articles » PMID: 28944080

Predicting Ligand-dependent Tumors from Multi-dimensional Signaling Features

Overview
Specialty Biology
Date 2017 Sep 26
PMID 28944080
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Targeted therapies have shown significant patient benefit in about 5-10% of solid tumors that are addicted to a single oncogene. Here, we explore the idea of ligand addiction as a driver of tumor growth. High ligand levels in tumors have been shown to be associated with impaired patient survival, but targeted therapies have not yet shown great benefit in unselected patient populations. Using an approach of applying Bagged Decision Trees (BDT) to high-dimensional signaling features derived from a computational model, we can predict ligand dependent proliferation across a set of 58 cell lines. This mechanistic, multi-pathway model that features receptor heterodimerization, was trained on seven cancer cell lines and can predict signaling across two independent cell lines by adjusting only the receptor expression levels for each cell line. Interestingly, for patient samples the predicted tumor growth response correlates with high growth factor expression in the tumor microenvironment, which argues for a co-evolution of both factors in vivo.

Citing Articles

Long-Term Single-Molecule Tracking in Living Cells using Weak-Affinity Protein Labeling.

Catapano C, Dietz M, Kompa J, Jang S, Freund P, Johnsson K Angew Chem Int Ed Engl. 2024; 64(1):e202413117.

PMID: 39545345 PMC: 11701368. DOI: 10.1002/anie.202413117.


DynProfiler: a Python package for comprehensive analysis and interpretation of signaling dynamics leveraged by deep learning techniques.

Tsutsui M, Okada M Bioinform Adv. 2024; 4(1):vbae145.

PMID: 39391633 PMC: 11464416. DOI: 10.1093/bioadv/vbae145.


Mechanistic modeling of cell viability assays with lineage tracing.

Mutsuddy A, Huggins J, Amrit A, Erdem C, Calhoun J, Birtwistle M bioRxiv. 2024; .

PMID: 39253474 PMC: 11383287. DOI: 10.1101/2024.08.23.609433.


Efficient parameter estimation for ODE models of cellular processes using semi-quantitative data.

Doresic D, Grein S, Hasenauer J Bioinformatics. 2024; 40(Suppl 1):i558-i566.

PMID: 38940161 PMC: 11211815. DOI: 10.1093/bioinformatics/btae210.


Posterior marginalization accelerates Bayesian inference for dynamical models of biological processes.

Raimundez E, Fedders M, Hasenauer J iScience. 2023; 26(11):108083.

PMID: 37867942 PMC: 10589897. DOI: 10.1016/j.isci.2023.108083.


References
1.
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin A, Kim S . The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391):603-7. PMC: 3320027. DOI: 10.1038/nature11003. View

2.
Gazdar A, Shigematsu H, Herz J, Minna J . Mutations and addiction to EGFR: the Achilles 'heal' of lung cancers?. Trends Mol Med. 2004; 10(10):481-6. DOI: 10.1016/j.molmed.2004.08.008. View

3.
Chong C, Janne P . The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013; 19(11):1389-400. PMC: 4049336. DOI: 10.1038/nm.3388. View

4.
Liu F, Wang L, Perna F, Nimer S . Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer. 2016; 16(6):359-72. PMC: 5548460. DOI: 10.1038/nrc.2016.41. View

5.
Holohan C, Van Schaeybroeck S, Longley D, Johnston P . Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013; 13(10):714-26. DOI: 10.1038/nrc3599. View