Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses and
Overview
Authors
Affiliations
Background: There is a continued need for strategies to prevent influenza. While cetylpyridinium chloride (CPC), a broad-spectrum antimicrobial agent, has an extensive antimicrobial spectrum, its ability to affect respiratory viruses has not been studied in detail.
Objectives: Here, we evaluate the ability of CPC to disrupt influenza viruses and .
Methods: The virucidal activity of CPC was evaluated against susceptible and oseltamivir-resistant strains of influenza viruses. The effective virucidal concentration (EC) of CPC was determined using a hemagglutination assay and tissue culture infective dose assay. The effect of CPC on viral envelope morphology and ultrastructure was evaluated using transmission electron microscopy (TEM). The ability of influenza virus to develop resistance was evaluated after multiple passaging in sub-inhibitory concentrations of CPC. Finally, the efficacy of CPC in formulation to prevent and treat influenza infection was evaluated using the PR8 murine influenza model.
Results: The virucidal effect of CPC occurred within 10 minutes, with mean EC and EC ranging between 5 to 20 μg/mL, for most strains of influenza tested regardless of type and resistance to oseltamivir. Examinations using TEM showed that CPC disrupted the integrity of the viral envelope and its morphology. Influenza viruses demonstrated no resistance to CPC despite prolonged exposure. Treated mice exhibited significantly increased survival and maintained body weight compared to untreated mice.
Conclusions: The antimicrobial agent CPC possesses virucidal activity against susceptible and resistant strains of influenza virus by targeting and disrupting the viral envelope. Substantial virucidal activity is seen even at very low concentrations of CPC without development of resistance. Moreover, CPC in formulation reduces influenza-associated mortality and morbidity .
Muniz F, Casarin M, Pola N, Rosing C, Silveira T, Silva F PLoS One. 2025; 20(2):e0316807.
PMID: 40009628 PMC: 11864509. DOI: 10.1371/journal.pone.0316807.
Dehghan Z, Mirmotalebisohi S, Mozafar M, Sameni M, Saberi F, Derakhshanfar A Daru. 2024; 32(1):215-235.
PMID: 38652363 PMC: 11087451. DOI: 10.1007/s40199-024-00507-0.
In vitro anti-Helicobacter pylori activity and antivirulence activity of cetylpyridinium chloride.
Xun M, Feng Z, Li H, Yao M, Wang H, Wei R PLoS One. 2024; 19(4):e0300696.
PMID: 38603679 PMC: 11008818. DOI: 10.1371/journal.pone.0300696.
Weller S, Burnell J, Aho B, Obeng B, Ledue E, Shim J Food Chem Toxicol. 2024; 186:114547.
PMID: 38408634 PMC: 11060648. DOI: 10.1016/j.fct.2024.114547.
Rius-Salvador M, Garcia-Murria M, Rusu L, Bano-Polo M, Leon R, Geller R PLoS One. 2024; 19(2):e0297291.
PMID: 38363760 PMC: 10871507. DOI: 10.1371/journal.pone.0297291.