» Articles » PMID: 28911970

Mesenchymal Stem Cells Alleviate Oxidative Stress-induced Mitochondrial Dysfunction in the Airways

Overview
Date 2017 Sep 16
PMID 28911970
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells.

Objective: We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo.

Methods: ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated.

Results: Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs.

Conclusion: iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD.

Citing Articles

Mesenchymal Stem Cell-Derived Extracellular Vesicles for Regenerative Applications and Radiotherapy.

Wang N, Ma F, Song H, He N, Zhang H, Li J Cell Transplant. 2025; 34():9636897241311019.

PMID: 39780320 PMC: 11713979. DOI: 10.1177/09636897241311019.


Second-Generation Antipsychotics Induce Metabolic Disruption in Adipose Tissue-Derived Mesenchymal Stem Cells Through an aPKC-Dependent Pathway.

Varalda M, Venetucci J, Nikaj H, Kankara C, Garro G, Keivan N Cells. 2025; 13(24.

PMID: 39768174 PMC: 11674800. DOI: 10.3390/cells13242084.


Comparative Analysis of the Therapeutic Effects of MSCs From Umbilical Cord, Bone Marrow, and Adipose Tissue and Investigating the Impact of Oxidized RNA on Radiation-Induced Lung Injury.

Zhai R, Tai F, Ding K, Tan X, Li H, Cao Z Stem Cells Int. 2024; 2024:7419270.

PMID: 39483952 PMC: 11527546. DOI: 10.1155/2024/7419270.


Multifaceted roles of mitochondria in asthma.

Zhang W, Zhang C, Zhang Y, Zhou X, Dong B, Tan H Cell Biol Toxicol. 2024; 40(1):85.

PMID: 39382744 PMC: 11464602. DOI: 10.1007/s10565-024-09928-8.


Targeting mitochondrial quality control: new therapeutic strategies for major diseases.

Hong W, Huang H, Zeng X, Duan C Mil Med Res. 2024; 11(1):59.

PMID: 39164792 PMC: 11337860. DOI: 10.1186/s40779-024-00556-1.