» Articles » PMID: 28878240

Electron Paramagnetic Resonance Microscopy Using Spins in Diamond Under Ambient Conditions

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Sep 8
PMID 28878240
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance spectroscopy is one of the most important tools in chemical and bio-medical research. However, sensitivity limitations typically restrict imaging resolution to ~ 10 µm. Here we bring quantum control to the detection of chemical systems to demonstrate high-resolution electron spin imaging using the quantum properties of an array of nitrogen-vacancy centres in diamond. Our electron paramagnetic resonance microscope selectively images electronic spin species by precisely tuning a magnetic field to bring the quantum probes into resonance with the external target spins. This provides diffraction limited spatial resolution of the target spin species over a field of view of 50 × 50 µm with a spin sensitivity of 10 spins per voxel or ∼100 zmol. The ability to perform spectroscopy and dynamically monitor spin-dependent redox reactions at these scales enables the development of electron spin resonance and zepto-chemistry in the physical and life sciences.Electron paramagnetic resonance spectroscopy has important scientific and medical uses but improving the resolution of conventional methods requires cryogenic, vacuum environments. Simpson et al. show nitrogen vacancy centres can be used for sub-micronmetre imaging with improved sensitivity in ambient conditions.

Citing Articles

Columnar excitation fluorescence microscope for accurate evaluation of quantum properties of color centers in bulk materials.

Masuyama Y, Shinei C, Ishii S, Abe H, Taniguchi T, Teraji T Sci Rep. 2024; 14(1):18135.

PMID: 39103449 PMC: 11300461. DOI: 10.1038/s41598-024-68610-5.


Scanning Spin Probe Based on Magnonic Vortex Quantum Cavities.

Gonzalez-Gutierrez C, Garcia-Pons D, Zueco D, Martinez-Perez M ACS Nano. 2024; 18(6):4717-4725.

PMID: 38271997 PMC: 10867890. DOI: 10.1021/acsnano.3c06704.


In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors.

Qin Z, Wang Z, Kong F, Su J, Huang Z, Zhao P Nat Commun. 2023; 14(1):6278.

PMID: 37805509 PMC: 10560202. DOI: 10.1038/s41467-023-41903-5.


Fast, Broad-Band Magnetic Resonance Spectroscopy with Diamond Widefield Relaxometry.

Mignon C, Ortiz Moreno A, Shirzad H, Padamati S, Damle V, Ong Y ACS Sens. 2023; 8(4):1667-1675.

PMID: 37043367 PMC: 10152489. DOI: 10.1021/acssensors.2c02809.


Diamond surface engineering for molecular sensing with nitrogen-vacancy centers.

Janitz E, Herb K, Volker L, Huxter W, Degen C, Abendroth J J Mater Chem C Mater. 2022; 10(37):13533-13569.

PMID: 36324301 PMC: 9521415. DOI: 10.1039/d2tc01258h.


References
1.
Hall L, Kehayias P, Simpson D, Jarmola A, Stacey A, Budker D . Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond. Nat Commun. 2016; 7:10211. PMC: 4728402. DOI: 10.1038/ncomms10211. View

2.
Liu W, Li H, Zhao B, Miao J . Synthesis, crystal structure and living cell imaging of a Cu(2+)-specific molecular probe. Org Biomol Chem. 2011; 9(13):4802-5. DOI: 10.1039/c1ob05358b. View

3.
Ermakova A, Pramanik G, Cai J, Algara-Siller G, Kaiser U, Weil T . Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 2013; 13(7):3305-9. DOI: 10.1021/nl4015233. View

4.
Goldstein S, Czapski G . The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of O2-. J Free Radic Biol Med. 1986; 2(1):3-11. DOI: 10.1016/0748-5514(86)90117-0. View

5.
Hickey J, James J, Henderson C, Price K, Mot A, Buncic G . Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy. Inorg Chem. 2015; 54(19):9556-67. DOI: 10.1021/acs.inorgchem.5b01599. View