» Articles » PMID: 31434907

Quantitative Nanoscale MRI with a Wide Field of View

Overview
Journal Sci Rep
Specialty Science
Date 2019 Aug 23
PMID 31434907
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Novel magnetic sensing modalities using quantum sensors or nanoscale probes have drastically improved the sensitivity and hence spatial resolution of nuclear magnetic resonance imaging (MRI) down to the nanoscale. Recent demonstrations of nuclear magnetic resonance (NMR) with paramagnetic colour centres include single molecule sensitivity, and sub-part-per-million spectral resolution. Mostly, these results have been obtained using well-characterised single sensors, which only permit extended imaging by scanning-probe microscopy. Here, we enhance multiplexed MRI with a thin layer of ensemble spin sensors in an inhomogeneous control field by optimal control spin manipulation to improve ensemble sensitivity and field of view (FOV). We demonstrate MRI of fluorine in patterned thin films only 1.2 nm in thickness, corresponding to a net moment of 120 nuclear spins per sensor spin. With the aid of the NMR signal, we reconstruct the nanoscale depth distribution of the sensor spins within the substrate. In addition, we exploit inhomogeneous ensemble control to squeeze the point spread function of the imager to about 100 nm and show that localisation of a point-like NMR signal within 40 nm is feasible. These results pave the way to quantitive NMR ensemble sensing and magnetic resonance microscopy with a resolution of few ten nanometers.

Citing Articles

Optical widefield nuclear magnetic resonance microscopy.

Briegel K, von Grafenstein N, Draeger J, Blumler P, Allert R, Bucher D Nat Commun. 2025; 16(1):1281.

PMID: 39900906 PMC: 11790880. DOI: 10.1038/s41467-024-55003-5.


Gate-set evaluation metrics for closed-loop optimal control on nitrogen-vacancy center ensembles in diamond.

Vetter P, Reisser T, Hirsch M, Calarco T, Motzoi F, Jelezko F npj Quantum Inf. 2024; 10(1):96.

PMID: 39371408 PMC: 11446828. DOI: 10.1038/s41534-024-00893-y.


Optimal bi-planar gradient coil configurations for diamond nitrogen-vacancy based diffusion-weighted NMR experiments.

Amrein P, Bruckmaier F, Jia F, Bucher D, Zaitsev M, Littin S MAGMA. 2023; 36(6):921-932.

PMID: 37578612 PMC: 10667408. DOI: 10.1007/s10334-023-01111-0.


Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors.

Allert R, Briegel K, Bucher D Chem Commun (Camb). 2022; 58(59):8165-8181.

PMID: 35796253 PMC: 9301930. DOI: 10.1039/d2cc01546c.


Magnetic Resonance Image in Monitor and Diagnosis of Patients with Neuromyelitis Optica.

Lu S, Wang D, Zhang F, Liu M Contrast Media Mol Imaging. 2022; 2022:1430380.

PMID: 35360267 PMC: 8947891. DOI: 10.1155/2022/1430380.


References
1.
Pfender M, Aslam N, Waldherr G, Neumann P, Wrachtrup J . Single-spin stochastic optical reconstruction microscopy. Proc Natl Acad Sci U S A. 2014; 111(41):14669-74. PMC: 4205624. DOI: 10.1073/pnas.1404907111. View

2.
Degen C, Poggio M, Mamin H, Rettner C, Rugar D . Nanoscale magnetic resonance imaging. Proc Natl Acad Sci U S A. 2009; 106(5):1313-7. PMC: 2628306. DOI: 10.1073/pnas.0812068106. View

3.
Khaneja N, Reiss T, Kehlet C, Schulte-Herbruggen T, Glaser S . Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magn Reson. 2005; 172(2):296-305. DOI: 10.1016/j.jmr.2004.11.004. View

4.
Nobauer T, Angerer A, Bartels B, Trupke M, Rotter S, Schmiedmayer J . Smooth Optimal Quantum Control for Robust Solid-State Spin Magnetometry. Phys Rev Lett. 2015; 115(19):190801. DOI: 10.1103/PhysRevLett.115.190801. View

5.
Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C . Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science. 2013; 339(6119):561-3. DOI: 10.1126/science.1231675. View