» Articles » PMID: 28444238

High-purity Circular RNA Isolation Method (RPAD) Reveals Vast Collection of Intronic CircRNAs

Overview
Specialty Biochemistry
Date 2017 Apr 27
PMID 28444238
Citations 106
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions.

Citing Articles

A versatile toolbox for determining IRES activity in cells and embryonic tissues.

Koch P, Zhang Z, Genuth N, Susanto T, Haimann M, Khmelinskaia A EMBO J. 2025; .

PMID: 40082722 DOI: 10.1038/s44318-025-00404-5.


Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application.

Marton E, Varga A, Domoszlai D, Buglyo G, Balazs A, Penyige A Cancers (Basel). 2025; 17(4).

PMID: 40002172 PMC: 11853212. DOI: 10.3390/cancers17040579.


The therapeutic potential of circular RNAs.

OLeary E, Jiang Y, Kristensen L, Hansen T, Kjems J Nat Rev Genet. 2025; .

PMID: 39789148 DOI: 10.1038/s41576-024-00806-x.


Real-time and programmable transcriptome sequencing with PROFIT-seq.

Zhang J, Hou L, Ma L, Cai Z, Ye S, Liu Y Nat Cell Biol. 2024; 26(12):2183-2194.

PMID: 39443694 PMC: 11628399. DOI: 10.1038/s41556-024-01537-1.


Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application.

Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J Biomolecules. 2024; 14(8).

PMID: 39199340 PMC: 11352787. DOI: 10.3390/biom14080952.


References
1.
Panda A, Grammatikakis I, Munk R, Gorospe M, Abdelmohsen K . Emerging roles and context of circular RNAs. Wiley Interdiscip Rev RNA. 2016; 8(2). PMC: 5315638. DOI: 10.1002/wrna.1386. View

2.
Jeck W, Sharpless N . Detecting and characterizing circular RNAs. Nat Biotechnol. 2014; 32(5):453-61. PMC: 4121655. DOI: 10.1038/nbt.2890. View

3.
Zhang Y, Zhang X, Chen T, Xiang J, Yin Q, Xing Y . Circular intronic long noncoding RNAs. Mol Cell. 2013; 51(6):792-806. DOI: 10.1016/j.molcel.2013.08.017. View

4.
Nigro J, Cho K, Fearon E, Kern S, Ruppert J, Oliner J . Scrambled exons. Cell. 1991; 64(3):607-13. DOI: 10.1016/0092-8674(91)90244-s. View

5.
Vincent H, Deutscher M . Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem. 2006; 281(40):29769-75. DOI: 10.1074/jbc.M606744200. View