» Articles » PMID: 28345028

Self-powered Integrated Microfluidic Point-of-care Low-cost Enabling (SIMPLE) Chip

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2017 Mar 28
PMID 28345028
Citations 111
Authors
Affiliations
Soon will be listed here.
Abstract

Portable, low-cost, and quantitative nucleic acid detection is desirable for point-of-care diagnostics; however, current polymerase chain reaction testing often requires time-consuming multiple steps and costly equipment. We report an integrated microfluidic diagnostic device capable of on-site quantitative nucleic acid detection directly from the blood without separate sample preparation steps. First, we prepatterned the amplification initiator [magnesium acetate (MgOAc)] on the chip to enable digital nucleic acid amplification. Second, a simplified sample preparation step is demonstrated, where the plasma is separated autonomously into 224 microwells (100 nl per well) without any hemolysis. Furthermore, self-powered microfluidic pumping without any external pumps, controllers, or power sources is accomplished by an integrated vacuum battery on the chip. This simple chip allows rapid quantitative digital nucleic acid detection directly from human blood samples (10 to 10 copies of methicillin-resistant DNA per microliter, ~30 min, via isothermal recombinase polymerase amplification). These autonomous, portable, lab-on-chip technologies provide promising foundations for future low-cost molecular diagnostic assays.

Citing Articles

Single-cell pathogen diagnostics for combating antibiotic resistance.

Li H, Hsieh K, Wong P, Mach K, Liao J, Wang T Nat Rev Methods Primers. 2025; 3.

PMID: 39917628 PMC: 11800871. DOI: 10.1038/s43586-022-00190-y.


A drop dispenser for simplifying on-farm detection of foodborne pathogens.

Ranjbaran M, Kaur S, Wang J, Raut B, Verma M PLoS One. 2024; 19(12):e0315444.

PMID: 39739646 PMC: 11687705. DOI: 10.1371/journal.pone.0315444.


Bio-energy-powered microfluidic devices.

Li Y, Xu C, Liao Y, Chen X, Chen J, Yang F Biomicrofluidics. 2024; 18(6):061303.

PMID: 39734663 PMC: 11672206. DOI: 10.1063/5.0227248.


Wicking pumps for microfluidics.

Aghajanloo B, Losereewanich W, Pastras C, Inglis D Biomicrofluidics. 2024; 18(6):061501.

PMID: 39494378 PMC: 11531334. DOI: 10.1063/5.0218030.


Space-Confined Amplification for In Situ Imaging of Single Nucleic Acid and Single Pathogen on Biological Samples.

Yang T, Li D, Luo Z, Wang J, Xiao F, Xu Y Adv Sci (Weinh). 2024; 11(44):e2407055.

PMID: 39373849 PMC: 11600185. DOI: 10.1002/advs.202407055.


References
1.
Liang D, Tentori A, Dimov I, Lee L . Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices. Biomicrofluidics. 2011; 5(2):24108. PMC: 3124517. DOI: 10.1063/1.3584003. View

2.
Hosokawa K, Sato K, Ichikawa N, Maeda M . Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip. 2004; 4(3):181-5. DOI: 10.1039/b403930k. View

3.
Yang S, Undar A, Zahn J . A microfluidic device for continuous, real time blood plasma separation. Lab Chip. 2006; 6(7):871-80. DOI: 10.1039/b516401j. View

4.
Cho H, Lee B, Liu G, Agarwal A, Lee L . Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip. 2009; 9(23):3360-3. DOI: 10.1039/b912076a. View

5.
Yager P, Domingo G, Gerdes J . Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008; 10:107-44. DOI: 10.1146/annurev.bioeng.10.061807.160524. View