6.
Liu W, Lee L
. Toward Rapid and Accurate Molecular Diagnostics at Home. Adv Mater. 2022; 35(21):e2206525.
DOI: 10.1002/adma.202206525.
View
7.
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami M
. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. Biosensors (Basel). 2023; 13(6).
PMC: 10296372.
DOI: 10.3390/bios13060584.
View
8.
Kaarj K, Akarapipad P, Yoon J
. Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-mediated Isothermal Amplification on Paper Microfluidic Chips. Sci Rep. 2018; 8(1):12438.
PMC: 6102244.
DOI: 10.1038/s41598-018-30797-9.
View
9.
Magro L, Jacquelin B, Escadafal C, Garneret P, Kwasiborski A, Manuguerra J
. Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics. Sci Rep. 2017; 7(1):1347.
PMC: 5431003.
DOI: 10.1038/s41598-017-00758-9.
View
10.
Baker R, Mahmud A, Miller I, Rajeev M, Rasambainarivo F, Rice B
. Infectious disease in an era of global change. Nat Rev Microbiol. 2021; 20(4):193-205.
PMC: 8513385.
DOI: 10.1038/s41579-021-00639-z.
View
11.
Kabay G, DeCastro J, Altay A, Smith K, Lu H, Capossela A
. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. Adv Mater. 2022; 34(30):e2201085.
DOI: 10.1002/adma.202201085.
View
12.
Chen L, Yadav V, Zhang C, Huo X, Wang C, Senapati S
. Elliptical Pipette Generated Large Microdroplets for POC Visual ddPCR Quantification of Low Viral Load. Anal Chem. 2021; 93(16):6456-6462.
DOI: 10.1021/acs.analchem.1c00192.
View
13.
Ganguli A, Ornob A, Yu H, Damhorst G, Chen W, Sun F
. Hands-free smartphone-based diagnostics for simultaneous detection of Zika, Chikungunya, and Dengue at point-of-care. Biomed Microdevices. 2017; 19(4):73.
DOI: 10.1007/s10544-017-0209-9.
View
14.
Santiago G, Vazquez J, Courtney S, Matias K, Andersen L, Colon C
. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun. 2018; 9(1):1391.
PMC: 5895813.
DOI: 10.1038/s41467-018-03772-1.
View
15.
Nguyen H, Bui H, Phan V, Seo T
. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens Bioelectron. 2021; 195:113655.
PMC: 8458107.
DOI: 10.1016/j.bios.2021.113655.
View
16.
Ackerman C, Myhrvold C, Thakku S, Freije C, Metsky H, Yang D
. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020; 582(7811):277-282.
PMC: 7332423.
DOI: 10.1038/s41586-020-2279-8.
View
17.
Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Forster E, Michel D
. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip. 2011; 12(3):464-73.
DOI: 10.1039/c1lc20693a.
View
18.
Li Z, Ding X, Yin K, Avery L, Ballesteros E, Liu C
. Instrument-free, CRISPR-based diagnostics of SARS-CoV-2 using self-contained microfluidic system. Biosens Bioelectron. 2021; 199:113865.
PMC: 8653405.
DOI: 10.1016/j.bios.2021.113865.
View
19.
Haeberle S, Zengerle R
. Microfluidic platforms for lab-on-a-chip applications. Lab Chip. 2007; 7(9):1094-110.
DOI: 10.1039/b706364b.
View
20.
Xiong H, Ye X, Li Y, Wang L, Zhang J, Fang X
. Rapid Differential Diagnosis of Seven Human Respiratory Coronaviruses Based on Centrifugal Microfluidic Nucleic Acid Assay. Anal Chem. 2020; 92(21):14297-14302.
DOI: 10.1021/acs.analchem.0c03364.
View