Dalboni da Rocha J, Lai J, Pandey P, Myat P, Loschinskey Z, Bag A
Cancers (Basel). 2025; 17(4).
PMID: 40002217
PMC: 11852968.
DOI: 10.3390/cancers17040622.
Zhang T, Pang H, Wu Y, Xu J, Liang Z, Xia S
Med Biol Eng Comput. 2025; .
PMID: 39961910
DOI: 10.1007/s11517-025-03322-0.
Shi J, Pelt D, Batenburg K
J Synchrotron Radiat. 2025; 32(Pt 2):442-456.
PMID: 39960472
PMC: 11892890.
DOI: 10.1107/S1600577525000359.
Ye K, Xu L, Pan B, Li J, Li M, Yuan H
Eur Radiol. 2025; .
PMID: 39792163
DOI: 10.1007/s00330-024-11317-y.
Athreya S, Radhachandran A, Ivezic V, Sant V, Arnold C, Speier W
JMIR Biomed Eng. 2024; 9:e58911.
PMID: 39689310
PMC: 11688586.
DOI: 10.2196/58911.
A Review of Factors Affecting Radiation Dose and Image Quality in Coronary CTA Performed with Wide-Detector CT.
Fan Y, Qin T, Sun Q, Wang M, Liang B
Tomography. 2024; 10(11):1730-1743.
PMID: 39590936
PMC: 11598146.
DOI: 10.3390/tomography10110127.
AI-based 3D analysis of retinal vasculature associated with retinal diseases using OCT angiography.
Liu Y, Tang Z, Li C, Zhang Z, Zhang Y, Wang X
Biomed Opt Express. 2024; 15(11):6416-6432.
PMID: 39553857
PMC: 11563331.
DOI: 10.1364/BOE.534703.
Self-supervised learning for CT image denoising and reconstruction: a review.
Choi K
Biomed Eng Lett. 2024; 14(6):1207-1220.
PMID: 39465103
PMC: 11502646.
DOI: 10.1007/s13534-024-00424-w.
Reconstructing and analyzing the invariances of low-dose CT image denoising networks.
Eulig E, Jager F, Maier J, Ommer B, Kachelriess M
Med Phys. 2024; 52(1):188-200.
PMID: 39348044
PMC: 11700010.
DOI: 10.1002/mp.17413.
Skeletal Muscle Segmentation at the Level of the Third Lumbar Vertebra (L3) in Low-Dose Computed Tomography: A Lightweight Algorithm.
Zhao X, Du Y, Yue H
Tomography. 2024; 10(9):1513-1526.
PMID: 39330757
PMC: 11435900.
DOI: 10.3390/tomography10090111.
Deep learning-based reconstruction improves the image quality of low-dose CT enterography in patients with inflammatory bowel disease.
He W, Xu P, Zhang M, Xu R, Shen X, Mao R
Abdom Radiol (NY). 2024; .
PMID: 39305292
DOI: 10.1007/s00261-024-04590-4.
Benchmarking deep learning-based low-dose CT image denoising algorithms.
Eulig E, Ommer B, Kachelriess M
Med Phys. 2024; 51(12):8776-8788.
PMID: 39287517
PMC: 11656299.
DOI: 10.1002/mp.17379.
Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies.
Zhao F, Liu M, Xiang M, Li D, Jiang X, Jin X
J Imaging Inform Med. 2024; .
PMID: 39231886
DOI: 10.1007/s10278-024-01213-8.
Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
Liao P, Zhang X, Wu Y, Chen H, Du W, Liu H
Quant Imaging Med Surg. 2024; 14(8):5571-5590.
PMID: 39144020
PMC: 11320552.
DOI: 10.21037/qims-24-68.
Convolutional neural networks combined with conventional filtering to semantically segment plant roots in rapidly scanned X-ray computed tomography volumes with high noise levels.
Teramoto S, Uga Y
Plant Methods. 2024; 20(1):73.
PMID: 38773503
PMC: 11106967.
DOI: 10.1186/s13007-024-01208-0.
Advancing diagnostic performance and clinical applicability of deep learning-driven generative adversarial networks for Alzheimer's disease.
Qu C, Zou Y, Dai Q, Ma Y, He J, Liu Q
Psychoradiology. 2024; 1(4):225-248.
PMID: 38666217
PMC: 10917234.
DOI: 10.1093/psyrad/kkab017.
Multi-kernel driven 3D convolutional neural network for automated detection of lung nodules in chest CT scans.
Wu R, Liang C, Zhang J, Tan Q, Huang H
Biomed Opt Express. 2024; 15(2):1195-1218.
PMID: 38404310
PMC: 10890889.
DOI: 10.1364/BOE.504875.
CT image denoising methods for image quality improvement and radiation dose reduction.
Sadia R, Chen J, Zhang J
J Appl Clin Med Phys. 2024; 25(2):e14270.
PMID: 38240466
PMC: 10860577.
DOI: 10.1002/acm2.14270.
A two-stage deep-learning framework for CT denoising based on a clinically structure-unaligned paired data set.
Hu R, Xie Y, Zhang L, Liu L, Luo H, Wu R
Quant Imaging Med Surg. 2024; 14(1):335-351.
PMID: 38223072
PMC: 10784028.
DOI: 10.21037/qims-23-403.
Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow.
Cobanaj M, Corti C, Dee E, McCullum L, Boldrini L, Schlam I
Eur J Cancer. 2023; 198:113504.
PMID: 38141549
PMC: 11362966.
DOI: 10.1016/j.ejca.2023.113504.