» Articles » PMID: 28260825

Preliminary Evaluation of a Novel Energy-resolved Photon-counting Gamma Ray Detector

Overview
Date 2017 Mar 7
PMID 28260825
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

Citing Articles

Effect of CZT system characteristics on Compton scatter event recovery.

Yang S, Li M, Reed M, Hugg J, Chen H, Abbaszadeh S IEEE Trans Radiat Plasma Med Sci. 2020; 4(1):91-97.

PMID: 31922083 PMC: 6952068. DOI: 10.1109/TRPMS.2019.2915054.


A novel depth-of-interaction rebinning strategy for ultrahigh resolution PET.

Kim K, Dutta J, Groll A, El Fakhri G, Meng L, Li Q Phys Med Biol. 2018; 63(16):165011.

PMID: 30040073 PMC: 6375090. DOI: 10.1088/1361-6560/aad58c.


Preparation of Zr(Mo,W)O with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)(OH,Cl)∙2HO.

Petrushina M, Dedova E, Filatov E, Plyusnin P, Korenev S, Kulkov S Sci Rep. 2018; 8(1):5337.

PMID: 29593240 PMC: 5871766. DOI: 10.1038/s41598-018-23529-6.


Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design.

Lai X, Meng L Phys Med Biol. 2018; 63(4):045008.

PMID: 29298960 PMC: 5880680. DOI: 10.1088/1361-6560/aaa4fb.


Tutorial on X-ray photon counting detector characterization.

Ren L, Zheng B, Liu H J Xray Sci Technol. 2017; 26(1):1-28.

PMID: 29154310 PMC: 5909414. DOI: 10.3233/XST-16210.


References
1.
Metzler S, Bowsher J, Greer K, Jaszczak R . Analytic determination of the pinhole collimator's point-spread function and RMS resolution with penetration. IEEE Trans Med Imaging. 2002; 21(8):878-87. DOI: 10.1109/tmi.2002.803129. View

2.
Brzymialkiewicz C, Tornai M, McKinley R, Bowsher J . Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector. IEEE Trans Med Imaging. 2005; 24(7):868-77. PMC: 4450799. DOI: 10.1109/tmi.2005.852501. View

3.
Cao Z, Bal G, Accorsi R, Acton P . Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging--a simulation study. Phys Med Biol. 2005; 50(19):4609-24. DOI: 10.1088/0031-9155/50/19/013. View

4.
Kim H, Furenlid L, Crawford M, Wilson D, Barber H, Peterson T . SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys. 2006; 33(2):465-74. PMC: 2655644. DOI: 10.1118/1.2164070. View

5.
Meng L, Fu G, Roy E, Suppe B, Chen C . An Ultrahigh Resolution SPECT System for I-125 Mouse Brain Imaging Studies. Nucl Instrum Methods Phys Res A. 2010; 600(1):498-505. PMC: 2723829. DOI: 10.1016/j.nima.2008.11.149. View