Lux D, Marcus-Alic K, Eisenacher M, Uszkoreit J
Brief Bioinform. 2025; 26(1).
PMID: 39757114
PMC: 11700661.
DOI: 10.1093/bib/bbae671.
Ward B, Pyr Dit Ruys S, Balligand J, Belkhir L, Cani P, Collet J
J Proteome Res. 2024; 23(9):3806-3822.
PMID: 39159935
PMC: 11385417.
DOI: 10.1021/acs.jproteome.4c00104.
Frohlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C
Mol Cell Proteomics. 2024; 23(8):100800.
PMID: 38880244
PMC: 11380018.
DOI: 10.1016/j.mcpro.2024.100800.
Kusebauch U, Lorenzetti A, Campbell D, Pan M, Shteynberg D, Kapil C
Sci Data. 2023; 10(1):697.
PMID: 37833331
PMC: 10575869.
DOI: 10.1038/s41597-023-02590-5.
Kirkpatrick J, Stemmer P, Searle B, Herring L, Martin L, Midha M
J Biomol Tech. 2023; 34(2).
PMID: 37435391
PMC: 10332336.
DOI: 10.7171/3fc1f5fe.9b78d780.
Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas.
Walzer M, Garcia-Seisdedos D, Prakash A, Brack P, Crowther P, Graham R
Sci Data. 2022; 9(1):335.
PMID: 35701420
PMC: 9197839.
DOI: 10.1038/s41597-022-01380-9.
Mass spectrometry-based retina proteomics.
Prokai L, Zaman K, Prokai-Tatrai K
Mass Spectrom Rev. 2022; 42(3):1032-1062.
PMID: 35670041
PMC: 9730434.
DOI: 10.1002/mas.21786.
Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework.
Fahrner M, Foll M, Gruning B, Bernt M, Rost H, Schilling O
Gigascience. 2022; 11.
PMID: 35166338
PMC: 8848309.
DOI: 10.1093/gigascience/giac005.
Deep representation features from DreamDIA improve the analysis of data-independent acquisition proteomics.
Gao M, Yang W, Li C, Chang Y, Liu Y, He Q
Commun Biol. 2021; 4(1):1190.
PMID: 34650228
PMC: 8517002.
DOI: 10.1038/s42003-021-02726-6.
The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children.
Porritt R, Binek A, Paschold L, Noval Rivas M, McArdle A, Yonker L
J Clin Invest. 2021; 131(20).
PMID: 34437303
PMC: 8516454.
DOI: 10.1172/JCI151520.
SWATH-MS Protocols in Human Diseases.
Chantada-Vazquez M, Garcia Vence M, Serna A, Nunez C, Bravo S
Methods Mol Biol. 2021; 2259:105-141.
PMID: 33687711
DOI: 10.1007/978-1-0716-1178-4_7.
A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS.
Midha M, Kusebauch U, Shteynberg D, Kapil C, Bader S, Reddy P
Sci Data. 2020; 7(1):389.
PMID: 33184295
PMC: 7665006.
DOI: 10.1038/s41597-020-00724-7.
Generation of a murine SWATH-MS spectral library to quantify more than 11,000 proteins.
Zhong C, Wu J, Qiu X, Chen X, Xie C, Han J
Sci Data. 2020; 7(1):104.
PMID: 32218446
PMC: 7099061.
DOI: 10.1038/s41597-020-0449-z.
Identification of Putative Early Atherosclerosis Biomarkers by Unsupervised Deconvolution of Heterogeneous Vascular Proteomes.
Parker S, Chen L, Spivia W, Saylor G, Mao C, Venkatraman V
J Proteome Res. 2020; 19(7):2794-2806.
PMID: 32202800
PMC: 7720636.
DOI: 10.1021/acs.jproteome.0c00118.
Expanding the Use of Spectral Libraries in Proteomics.
Deutsch E, Perez-Riverol Y, Chalkley R, Wilhelm M, Tate S, Sachsenberg T
J Proteome Res. 2018; 17(12):4051-4060.
PMID: 30270626
PMC: 6443480.
DOI: 10.1021/acs.jproteome.8b00485.
Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks ().
Li J, Levitan B, Gomez-Jimenez S, Kultz D
Mol Cell Proteomics. 2018; 17(11):2146-2163.
PMID: 30093419
PMC: 6210217.
DOI: 10.1074/mcp.RA118.000973.
Application of SWATH Proteomics to Mouse Biology.
Wu Y, Williams E, Aebersold R
Curr Protoc Mouse Biol. 2017; 7(2):130-143.
PMID: 28628219
PMC: 5569239.
DOI: 10.1002/cpmo.28.
TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.
Rost H, Liu Y, DAgostino G, Zanella M, Navarro P, Rosenberger G
Nat Methods. 2016; 13(9):777-83.
PMID: 27479329
PMC: 5008461.
DOI: 10.1038/nmeth.3954.