» Articles » PMID: 32218446

Generation of a Murine SWATH-MS Spectral Library to Quantify More Than 11,000 Proteins

Overview
Journal Sci Data
Specialty Science
Date 2020 Mar 29
PMID 32218446
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Targeted SWATH-MS data analysis is critically dependent on the spectral library. Comprehensive spectral libraries of human or several other organisms have been published, but the extensive spectral library for mouse, a widely used model organism is not available. Here, we present a large murine spectral library covering more than 11,000 proteins and 240,000 proteotypic peptides, which included proteins derived from 9 murine tissue samples and one murine L929 cell line. This resource supports the quantification of 67% of all murine proteins annotated by UniProtKB/Swiss-Prot. Furthermore, we applied the spectral library to SWATH-MS data from murine tissue samples. Data are available via SWATHAtlas (PASS01441).

Citing Articles

Optimal Sample Preparation Workflow for Quantitative Mass Spectrometry-Based Studies in the Low Range.

Kassem S, Diez P Methods Mol Biol. 2024; 2884:13-23.

PMID: 39715994 DOI: 10.1007/978-1-0716-4298-6_2.


Deep Spectral Library of Mice Retina for Myopia Research: Proteomics Dataset generated by SWATH and DIA-NN.

Sze Y, Tse D, Zuo B, Li K, Zhao Q, Jiang X Sci Data. 2024; 11(1):1115.

PMID: 39389962 PMC: 11467338. DOI: 10.1038/s41597-024-03958-x.


Proteome-wide copy-number estimation from transcriptomics.

Sweatt A, Griffiths C, Groves S, Paudel B, Wang L, Kashatus D Mol Syst Biol. 2024; 20(11):1230-1256.

PMID: 39333715 PMC: 11535397. DOI: 10.1038/s44320-024-00064-3.


Baseline proteomics characterisation of the emerging host biomanufacturing organism Halomonas bluephagenesis.

Russell M, Currin A, Rowe W, Chen G, Barran P, Scrutton N Sci Data. 2022; 9(1):492.

PMID: 35963929 PMC: 9376085. DOI: 10.1038/s41597-022-01610-0.


Vascular Proteome Responses Precede Organ Dysfunction in a Murine Model of Staphylococcus aureus Bacteremia.

Sorrentino J, Golden G, Morris C, Painter C, Nizet V, Campos A mSystems. 2022; 7(4):e0039522.

PMID: 35913192 PMC: 9426442. DOI: 10.1128/msystems.00395-22.


References
1.
GOEDDE H, Rothhammer F, Benkmann H, Bogdanski P . Ecogenetic studies in Atacameño Indians. Hum Genet. 1984; 67(3):343-6. DOI: 10.1007/BF00291366. View

2.
Collins B, Hunter C, Liu Y, Schilling B, Rosenberger G, Bader S . Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017; 8(1):291. PMC: 5566333. DOI: 10.1038/s41467-017-00249-5. View

3.
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams E, Schiess R . Similarities and Differences of Blood N-Glycoproteins in Five Solid Carcinomas at Localized Clinical Stage Analyzed by SWATH-MS. Cell Rep. 2018; 23(9):2819-2831.e5. DOI: 10.1016/j.celrep.2018.04.114. View

4.
Li Y, Zhong C, Xu X, Cai S, Wu X, Zhang Y . Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods. 2015; 12(12):1105-6. DOI: 10.1038/nmeth.3593. View

5.
Ting Y, Egertson J, Bollinger J, Searle B, Payne S, Noble W . PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data. Nat Methods. 2017; 14(9):903-908. PMC: 5578911. DOI: 10.1038/nmeth.4390. View