» Articles » PMID: 34650228

Deep Representation Features from DreamDIA Improve the Analysis of Data-independent Acquisition Proteomics

Overview
Journal Commun Biol
Specialty Biology
Date 2021 Oct 15
PMID 34650228
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We developed DreamDIA (denoted as DreamDIA), a software suite based on a deep representation model for data-independent acquisition (DIA) data analysis. DreamDIA adopts a data-driven strategy to capture comprehensive information from elution patterns of peptides in DIA data and achieves considerable improvements on both identification and quantification performance compared with other state-of-the-art methods such as OpenSWATH, Skyline and DIA-NN. Specifically, in contrast to existing methods which use only 6 to 10 selected fragment ions from spectral libraries, DreamDIA extracts additional features from hundreds of theoretical elution profiles originated from different ions of each precursor using a deep representation network. To achieve higher coverage of target peptides without sacrificing specificity, the extracted features are further processed by nonlinear discriminative models under the framework of positive-unlabeled learning with decoy peptides as affirmative negative controls. DreamDIA is publicly available at https://github.com/xmuyulab/DreamDIA-XMBD for high coverage and accuracy DIA data analysis.

Citing Articles

Cross-Run Hybrid Features Improve the Identification of Data-Independent Acquisition Proteomics.

Liu Y, Mei L, Liang C, Zhong C, Tong M, Yu R ACS Omega. 2024; 9(46):46362-46372.

PMID: 39583733 PMC: 11579728. DOI: 10.1021/acsomega.4c07398.


The mouse multi-organ proteome from infancy to adulthood.

Wang Q, Ding X, Xu Z, Wang B, Wang A, Wang L Nat Commun. 2024; 15(1):5752.

PMID: 38982135 PMC: 11233712. DOI: 10.1038/s41467-024-50183-6.


Data-Independent Acquisition: A Milestone and Prospect in Clinical Mass Spectrometry-Based Proteomics.

Frohlich K, Fahrner M, Brombacher E, Seredynska A, Maldacker M, Kreutz C Mol Cell Proteomics. 2024; 23(8):100800.

PMID: 38880244 PMC: 11380018. DOI: 10.1016/j.mcpro.2024.100800.


SeFilter-DIA: Squeeze-and-Excitation Network for Filtering High-Confidence Peptides of Data-Independent Acquisition Proteomics.

He Q, Guo H, Li Y, He G, Li X, Shuai J Interdiscip Sci. 2024; 16(3):579-592.

PMID: 38472692 DOI: 10.1007/s12539-024-00611-4.


Dear-DIA: Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics.

He Q, Zhong C, Li X, Guo H, Li Y, Gao M Research (Wash D C). 2023; 6:0179.

PMID: 37377457 PMC: 10292580. DOI: 10.34133/research.0179.


References
1.
Rost H, Rosenberger G, Navarro P, Gillet L, Miladinovic S, Schubert O . OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 2014; 32(3):219-23. DOI: 10.1038/nbt.2841. View

2.
Keller A, Eng J, Zhang N, Li X, Aebersold R . A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol. 2006; 1:2005.0017. PMC: 1681455. DOI: 10.1038/msb4100024. View

3.
Yang Y, Liu X, Shen C, Lin Y, Yang P, Qiao L . In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Nat Commun. 2020; 11(1):146. PMC: 6952453. DOI: 10.1038/s41467-019-13866-z. View

4.
Keller A, Nesvizhskii A, Kolker E, Aebersold R . Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002; 74(20):5383-92. DOI: 10.1021/ac025747h. View

5.
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K . iProX: an integrated proteome resource. Nucleic Acids Res. 2018; 47(D1):D1211-D1217. PMC: 6323926. DOI: 10.1093/nar/gky869. View