» Articles » PMID: 28069708

Ubiquitylation-dependent Oligomerization Regulates Activity of Nedd4 Ligases

Abstract

Ubiquitylation controls protein function and degradation. Therefore, ubiquitin ligases need to be tightly controlled. We discovered an evolutionarily conserved allosteric restraint mechanism for Nedd4 ligases and demonstrated its function with diverse substrates: the yeast soluble proteins Rpn10 and Rvs167, and the human receptor tyrosine kinase FGFR1 and cardiac I potassium channel. We found that a potential trimerization interface is structurally blocked by the HECT domain α1-helix, which further undergoes ubiquitylation on a conserved lysine residue. Genetic, bioinformatics, biochemical and biophysical data show that attraction between this α1-conjugated ubiquitin and the HECT ubiquitin-binding patch pulls the α1-helix out of the interface, thereby promoting trimerization. Strikingly, trimerization renders the ligase inactive. Arginine substitution of the ubiquitylated lysine impairs this inactivation mechanism and results in unrestrained FGFR1 ubiquitylation in cells. Similarly, electrophysiological data and TIRF microscopy show that NEDD4 unrestrained mutant constitutively downregulates the I channel, thus confirming the functional importance of E3-ligase autoinhibition.

Citing Articles

TMEM55B links autophagy flux, lysosomal repair, and TFE3 activation in response to oxidative stress.

Jeong E, Willett R, Rissone A, La Spina M, Puertollano R Nat Commun. 2024; 15(1):93.

PMID: 38168055 PMC: 10761734. DOI: 10.1038/s41467-023-44316-6.


Primate-specific isoform of Nedd4-1 regulates substrate binding via Ser/Thr phosphorylation and 14-3-3 binding.

Kefalas G, Rotin D Sci Rep. 2023; 13(1):17903.

PMID: 37863970 PMC: 10589272. DOI: 10.1038/s41598-023-44761-9.


Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5.

Hehl L, Horn-Ghetko D, Prabu J, Vollrath R, Vu D, Perez Berrocal D Nat Chem Biol. 2023; 20(2):190-200.

PMID: 37620400 PMC: 10830417. DOI: 10.1038/s41589-023-01414-2.


HECT domain interaction with ubiquitin binding sites on Tsg101-UEV controls HIV-1 egress, maturation, and infectivity.

Nyenhuis D, Rajasekaran R, Watanabe S, Strub M, Khan M, Powell M J Biol Chem. 2023; 299(2):102901.

PMID: 36642186 PMC: 9944984. DOI: 10.1016/j.jbc.2023.102901.


Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family.

Kane E, Beasley S, Schafer J, Bohl J, Lee Y, Rich K Biosci Rep. 2022; 42(10).

PMID: 36111624 PMC: 9547173. DOI: 10.1042/BSR20221036.


References
1.
Udeshi N, Svinkina T, Mertins P, Kuhn E, Mani D, Qiao J . Refined preparation and use of anti-diglycine remnant (K-ε-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics. 2012; 12(3):825-31. PMC: 3591673. DOI: 10.1074/mcp.O112.027094. View

2.
Lu J, Lin Y, Qian J, Tao S, Zhu J, Pickart C . Functional dissection of a HECT ubiquitin E3 ligase. Mol Cell Proteomics. 2007; 7(1):35-45. PMC: 2861892. DOI: 10.1074/mcp.M700353-MCP200. View

3.
Kee Y, Lyon N, Huibregtse J . The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J. 2005; 24(13):2414-24. PMC: 1173151. DOI: 10.1038/sj.emboj.7600710. View

4.
Li M, Rong Y, Chuang Y, Peng D, Emr S . Ubiquitin-dependent lysosomal membrane protein sorting and degradation. Mol Cell. 2015; 57(3):467-78. DOI: 10.1016/j.molcel.2014.12.012. View

5.
Rodrigues E, Scudder S, Goo M, Patrick G . Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1. J Neurosci. 2016; 36(5):1590-5. PMC: 4737771. DOI: 10.1523/JNEUROSCI.2964-15.2016. View