» Articles » PMID: 27979909

Distinct Cellular States Determine Calcium Signaling response

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2016 Dec 17
PMID 27979909
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

The heterogeneity in mammalian cells signaling response is largely a result of pre-existing cell-to-cell variability. It is unknown whether cell-to-cell variability rises from biochemical stochastic fluctuations or distinct cellular states. Here, we utilize calcium response to adenosine trisphosphate as a model for investigating the structure of heterogeneity within a population of cells and analyze whether distinct cellular response states coexist. We use a functional definition of cellular state that is based on a mechanistic dynamical systems model of calcium signaling. Using Bayesian parameter inference, we obtain high confidence parameter value distributions for several hundred cells, each fitted individually. Clustering the inferred parameter distributions revealed three major distinct cellular states within the population. The existence of distinct cellular states raises the possibility that the observed variability in response is a result of structured heterogeneity between cells. The inferred parameter distribution predicts, and experiments confirm that variability in IP3R response explains the majority of calcium heterogeneity. Our work shows how mechanistic models and single-cell parameter fitting can uncover hidden population structure and demonstrate the need for parameter inference at the single-cell level.

Citing Articles

Inertial effect of cell state velocity on the quiescence-proliferation fate decision.

Venkatachalapathy H, Brzakala C, Batchelor E, Azarin S, Sarkar C NPJ Syst Biol Appl. 2024; 10(1):111.

PMID: 39358384 PMC: 11447052. DOI: 10.1038/s41540-024-00428-3.


Stimulus-response signaling dynamics characterize macrophage polarization states.

Singh A, Sen S, Iter M, Adelaja A, Luecke S, Guo X Cell Syst. 2024; 15(6):563-577.e6.

PMID: 38843840 PMC: 11226196. DOI: 10.1016/j.cels.2024.05.002.


Reverse engineering morphogenesis through Bayesian optimization of physics-based models.

Kumar N, Mim M, Dowling A, Zartman J NPJ Syst Biol Appl. 2024; 10(1):49.

PMID: 38714708 PMC: 11076624. DOI: 10.1038/s41540-024-00375-z.


Characterizing heterogeneous single-cell dose responses computationally and experimentally using threshold inhibition surfaces and dose-titration assays.

Kinnunen P, Humphries B, Luker G, Luker K, Linderman J NPJ Syst Biol Appl. 2024; 10(1):42.

PMID: 38637530 PMC: 11026493. DOI: 10.1038/s41540-024-00369-x.


TNFR1 mediates heterogeneity in single-cell NF-κB activation.

Cheng C, Hsiao J, Hoffmann A, Tu H iScience. 2024; 27(4):109486.

PMID: 38551009 PMC: 10973173. DOI: 10.1016/j.isci.2024.109486.


References
1.
Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J . Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007; 3(10):1871-78. PMC: 2000971. DOI: 10.1371/journal.pcbi.0030189. View

2.
Buettner F, Natarajan K, Casale F, Proserpio V, Scialdone A, Theis F . Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-60. DOI: 10.1038/nbt.3102. View

3.
Su S, Phua S, DeRose R, Chiba S, Narita K, Kalugin P . Genetically encoded calcium indicator illuminates calcium dynamics in primary cilia. Nat Methods. 2013; 10(11):1105-7. PMC: 3860264. DOI: 10.1038/nmeth.2647. View

4.
Rhee A, Cheong R, Levchenko A . Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Proc Natl Acad Sci U S A. 2014; 111(48):17330-5. PMC: 4260601. DOI: 10.1073/pnas.1411932111. View

5.
Akerboom J, Chen T, Wardill T, Tian L, Marvin J, Mutlu S . Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012; 32(40):13819-40. PMC: 3482105. DOI: 10.1523/JNEUROSCI.2601-12.2012. View