» Articles » PMID: 25599176

Computational Analysis of Cell-to-cell Heterogeneity in Single-cell RNA-sequencing Data Reveals Hidden Subpopulations of Cells

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2015 Jan 20
PMID 25599176
Citations 558
Authors
Affiliations
Soon will be listed here.
Abstract

Recent technical developments have enabled the transcriptomes of hundreds of cells to be assayed in an unbiased manner, opening up the possibility that new subpopulations of cells can be found. However, the effects of potential confounding factors, such as the cell cycle, on the heterogeneity of gene expression and therefore on the ability to robustly identify subpopulations remain unclear. We present and validate a computational approach that uses latent variable models to account for such hidden factors. We show that our single-cell latent variable model (scLVM) allows the identification of otherwise undetectable subpopulations of cells that correspond to different stages during the differentiation of naive T cells into T helper 2 cells. Our approach can be used not only to identify cellular subpopulations but also to tease apart different sources of gene expression heterogeneity in single-cell transcriptomes.

Citing Articles

MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.

Wang Y, Liu Z, Ma X Genome Med. 2025; 17(1):21.

PMID: 40082941 PMC: 11907906. DOI: 10.1186/s13073-025-01449-1.


AnomalGRN: deciphering single-cell gene regulation network with graph anomaly detection.

Zhou Z, Wei J, Liu M, Zhuo L, Fu X, Zou Q BMC Biol. 2025; 23(1):73.

PMID: 40069807 PMC: 11900578. DOI: 10.1186/s12915-025-02177-z.


Ectopic mouse TMC1 and TMC2 alone form mechanosensitive channels that are potently modulated by TMIE.

Chen Y, Li Y, Liu Y, Sun J, Feng W, Chen Y Proc Natl Acad Sci U S A. 2025; 122(9):e2403141122.

PMID: 39999170 PMC: 11892609. DOI: 10.1073/pnas.2403141122.


Interpretable single-cell factor decomposition using sciRED.

Pouyabahar D, Andrews T, Bader G Nat Commun. 2025; 16(1):1878.

PMID: 39987196 PMC: 11846867. DOI: 10.1038/s41467-025-57157-2.


Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.

Stock M, Losert C, Zambon M, Popp N, Lubatti G, Hormanseder E Mol Syst Biol. 2025; 21(3):214-230.

PMID: 39939367 PMC: 11876610. DOI: 10.1038/s44320-025-00088-3.


References
1.
Singh A, Chappell J, Trost R, Lin L, Wang T, Tang J . Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 2013; 1(6):532-44. PMC: 3871385. DOI: 10.1016/j.stemcr.2013.10.009. View

2.
Stegle O, Teichmann S, Marioni J . Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133-45. DOI: 10.1038/nrg3833. View

3.
Liu J, Hansen C, Quake S . Solving the "world-to-chip" interface problem with a microfluidic matrix. Anal Chem. 2003; 75(18):4718-23. DOI: 10.1021/ac0346407. View

4.
Wheeler A, Throndset W, Whelan R, Leach A, Zare R, Liao Y . Microfluidic device for single-cell analysis. Anal Chem. 2003; 75(14):3581-6. DOI: 10.1021/ac0340758. View

5.
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X . Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010; 6(5):468-78. PMC: 2954317. DOI: 10.1016/j.stem.2010.03.015. View