» Articles » PMID: 27919219

STON: Exploring Biological Pathways Using the SBGN Standard and Graph Databases

Overview
Publisher Biomed Central
Specialty Biology
Date 2016 Dec 7
PMID 27919219
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Background: When modeling in Systems Biology and Systems Medicine, the data is often extensive, complex and heterogeneous. Graphs are a natural way of representing biological networks. Graph databases enable efficient storage and processing of the encoded biological relationships. They furthermore support queries on the structure of biological networks.

Results: We present the Java-based framework STON (SBGN TO Neo4j). STON imports and translates metabolic, signalling and gene regulatory pathways represented in the Systems Biology Graphical Notation into a graph-oriented format compatible with the Neo4j graph database.

Conclusion: STON exploits the power of graph databases to store and query complex biological pathways. This advances the possibility of: i) identifying subnetworks in a given pathway; ii) linking networks across different levels of granularity to address difficulties related to incomplete knowledge representation at single level; and iii) identifying common patterns between pathways in the database.

Citing Articles

StonPy: a tool to parse and query collections of SBGN maps in a graph database.

Rougny A, Balaur I, Luna A, Mazein A Bioinformatics. 2023; 39(3).

PMID: 36897014 PMC: 10017094. DOI: 10.1093/bioinformatics/btad100.


Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context.

Robin V, Bodein A, Scott-Boyer M, Leclercq M, Perin O, Droit A Front Mol Biosci. 2022; 9:962799.

PMID: 36158572 PMC: 9494275. DOI: 10.3389/fmolb.2022.962799.


An overview of graph databases and their applications in the biomedical domain.

Timon-Reina S, Rincon M, Martinez-Tomas R Database (Oxford). 2021; 2021.

PMID: 34003247 PMC: 8130509. DOI: 10.1093/database/baab026.


SBGN Bricks Ontology as a tool to describe recurring concepts in molecular networks.

Rougny A, Toure V, Albanese J, Waltemath D, Shirshov D, Sorokin A Brief Bioinform. 2021; 22(5).

PMID: 33758926 PMC: 8425392. DOI: 10.1093/bib/bbab049.


Harmonizing semantic annotations for computational models in biology.

Neal M, Konig M, Nickerson D, Misirli G, Kalbasi R, Drager A Brief Bioinform. 2018; 20(2):540-550.

PMID: 30462164 PMC: 6433895. DOI: 10.1093/bib/bby087.


References
1.
Sorokin A, Le Novere N, Luna A, Czauderna T, Demir E, Haw R . Systems Biology Graphical Notation: Entity Relationship language Level 1 Version 2. J Integr Bioinform. 2015; 12(2):264. DOI: 10.2390/biecoll-jib-2015-264. View

2.
Zhang J, Wiemann S . KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics. 2009; 25(11):1470-1. PMC: 2682514. DOI: 10.1093/bioinformatics/btp167. View

3.
Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 28(1):27-30. PMC: 102409. DOI: 10.1093/nar/28.1.27. View

4.
Czauderna T, Klukas C, Schreiber F . Editing, validating and translating of SBGN maps. Bioinformatics. 2010; 26(18):2340-1. PMC: 2935428. DOI: 10.1093/bioinformatics/btq407. View

5.
Henkel R, Wolkenhauer O, Waltemath D . Combining computational models, semantic annotations and simulation experiments in a graph database. Database (Oxford). 2015; 2015. PMC: 4352687. DOI: 10.1093/database/bau130. View