» Articles » PMID: 29872544

Systems Medicine Disease Maps: Community-driven Comprehensive Representation of Disease Mechanisms

Abstract

The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes.

Citing Articles

Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression.

Hemedan A, Satagopam V, Schneider R, Ostaszewski M iScience. 2024; 27(10):110956.

PMID: 39429779 PMC: 11489052. DOI: 10.1016/j.isci.2024.110956.


BioKC: a collaborative platform for curation and annotation of molecular interactions.

Vega C, Ostaszewski M, Groues V, Schneider R, Satagopam V Database (Oxford). 2024; 2024.

PMID: 38537198 PMC: 10972550. DOI: 10.1093/database/baae013.


The SYSCID map: a graphical and computational resource of molecular mechanisms across rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease.

Acencio M, Ostaszewski M, Mazein A, Rosenstiel P, Aden K, Mishra N Front Immunol. 2023; 14:1257321.

PMID: 38022524 PMC: 10646502. DOI: 10.3389/fimmu.2023.1257321.


Visualization of automatically combined disease maps and pathway diagrams for rare diseases.

Gawron P, Hoksza D, Pinero J, Pena-Chilet M, Esteban-Medina M, Fernandez-Rueda J Front Bioinform. 2023; 3:1101505.

PMID: 37502697 PMC: 10369067. DOI: 10.3389/fbinf.2023.1101505.


A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint.

Singh V, Naldi A, Soliman S, Niarakis A NPJ Syst Biol Appl. 2023; 9(1):33.

PMID: 37454172 PMC: 10349856. DOI: 10.1038/s41540-023-00294-5.


References
1.
Kieffer S, Dwyer T, Marriott K, Wybrow M . HOLA: Human-like Orthogonal Network Layout. IEEE Trans Vis Comput Graph. 2015; 22(1):349-58. DOI: 10.1109/TVCG.2015.2467451. View

2.
Satagopam V, Gu W, Eifes S, Gawron P, Ostaszewski M, Gebel S . Integration and Visualization of Translational Medicine Data for Better Understanding of Human Diseases. Big Data. 2016; 4(2):97-108. PMC: 4932659. DOI: 10.1089/big.2015.0057. View

3.
Demir E, Cary M, Paley S, Fukuda K, Lemer C, Vastrik I . The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010; 28(9):935-42. PMC: 3001121. DOI: 10.1038/nbt.1666. View

4.
Okiyoneda T, Lukacs G . Fixing cystic fibrosis by correcting CFTR domain assembly. J Cell Biol. 2012; 199(2):199-204. PMC: 3471238. DOI: 10.1083/jcb.201208083. View

5.
Goh K, Cusick M, Valle D, Childs B, Vidal M, Barabasi A . The human disease network. Proc Natl Acad Sci U S A. 2007; 104(21):8685-90. PMC: 1885563. DOI: 10.1073/pnas.0701361104. View