» Articles » PMID: 27899640

Structural Insights into NusG Regulating Transcription Elongation

Overview
Specialty Biochemistry
Date 2016 Dec 1
PMID 27899640
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

NusG is an essential transcription factor that plays multiple key regulatory roles in transcription elongation, termination and coupling translation and transcription. The core role of NusG is to enhance transcription elongation and RNA polymerase processivity. Here, we present the structure of Escherichia coli RNA polymerase complexed with NusG. The structure shows that the NusG N-terminal domain (NGN) binds at the central cleft of RNA polymerase surrounded by the β' clamp helices, the β protrusion, and the β lobe domains to close the promoter DNA binding channel and constrain the β' clamp domain, but with an orientation that is different from the one observed in the archaeal β' clamp-Spt4/5 complex. The structure also allows us to construct a reliable model of the complete NusG-associated transcription elongation complex, suggesting that the NGN domain binds at the upstream fork junction of the transcription elongation complex, similar to σ2 in the transcription initiation complex, to stabilize the junction, and therefore enhances transcription processivity.

Citing Articles

Chromatin and transcription in Nucleic Acids Research: the first 50 years.

Defossez P Nucleic Acids Res. 2024; 52(22):13485-13489.

PMID: 39607690 PMC: 11662935. DOI: 10.1093/nar/gkae1151.


Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics.

Ye J, Kan C, Yang X, Ma C RSC Med Chem. 2024; 15(5):1471-1487.

PMID: 38784472 PMC: 11110800. DOI: 10.1039/d3md00690e.


Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.

Tarau D, Grunberger F, Pilsl M, Reichelt R, Heiss F, Konig S Nucleic Acids Res. 2024; 52(10):6017-6035.

PMID: 38709902 PMC: 11162788. DOI: 10.1093/nar/gkae282.


Structural basis for transcription activation by the nitrate-responsive regulator NarL.

Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y Nucleic Acids Res. 2024; 52(3):1471-1482.

PMID: 38197271 PMC: 10853779. DOI: 10.1093/nar/gkad1231.


Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts.

Stephanie F, Tambunan U, Siahaan T Life (Basel). 2022; 12(11).

PMID: 36362929 PMC: 9695777. DOI: 10.3390/life12111774.


References
1.
Tomar S, Artsimovitch I . NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev. 2013; 113(11):8604-19. PMC: 4259564. DOI: 10.1021/cr400064k. View

2.
Vassylyev D, Vassylyeva M, Perederina A, Tahirov T, Artsimovitch I . Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 2007; 448(7150):157-62. DOI: 10.1038/nature05932. View

3.
Klein B, Bose D, Baker K, Yusoff Z, Zhang X, Murakami K . RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci U S A. 2010; 108(2):546-50. PMC: 3021056. DOI: 10.1073/pnas.1013828108. View

4.
Santangelo T, Artsimovitch I . Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol. 2011; 9(5):319-29. PMC: 3125153. DOI: 10.1038/nrmicro2560. View

5.
Otwinowski Z, Minor W . Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307-26. DOI: 10.1016/S0076-6879(97)76066-X. View