» Articles » PMID: 20639538

Functional Analysis of Thermus Thermophilus Transcription Factor NusG

Overview
Specialty Biochemistry
Date 2010 Jul 20
PMID 20639538
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Transcription elongation factors from the NusG family are ubiquitous from bacteria to humans and play diverse roles in the regulation of gene expression. These proteins consist of at least two domains. The N-terminal domains directly bind to the largest, β' in bacteria, subunit of RNA polymerase (RNAP), whereas the C-terminal domains interact with other cellular components and serve as platforms for the assembly of large nucleoprotein complexes. Escherichia coli NusG and its paralog RfaH modify RNAP into a fast, pause-resistant state but the detailed molecular mechanism of this modification remains unclear since no high-resolution structural data are available for the E. coli system. We wanted to investigate whether Thermus thermophilus (Tth) NusG can be used as a model for structural studies of this family of regulators. Here, we show that Tth NusG slows down rather than facilitates transcript elongation by its cognate RNAP. On the other hand, similarly to the E. coli regulators, Tth NusG apparently binds near the upstream end of the transcription bubble, competes with σ(A), and favors forward translocation by RNAP. Our data suggest that the mechanism of NusG recruitment to RNAP is universally conserved even though the regulatory outcomes among its homologs may appear distinct.

Citing Articles

Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity.

Saba J, Flores K, Marshall B, Engstrom M, Peng Y, Garje A Nat Commun. 2024; 15(1):10862.

PMID: 39738018 PMC: 11685472. DOI: 10.1038/s41467-024-55215-9.


Force and the α-C-terminal domains bias RNA polymerase recycling.

Qian J, Wang B, Artsimovitch I, Dunlap D, Finzi L Nat Commun. 2024; 15(1):7520.

PMID: 39214958 PMC: 11364550. DOI: 10.1038/s41467-024-51603-3.


Robust regulation of transcription pausing in  by the ubiquitous elongation factor NusG.

Yakhnin A, Bubunenko M, Mandell Z, Lubkowska L, Husher S, Babitzke P Proc Natl Acad Sci U S A. 2023; 120(24):e2221114120.

PMID: 37276387 PMC: 10268239. DOI: 10.1073/pnas.2221114120.


Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis.

Delbeau M, Omollo E, Froom R, Koh S, Mooney R, Lilic M Mol Cell. 2023; 83(9):1474-1488.e8.

PMID: 37116494 PMC: 10231689. DOI: 10.1016/j.molcel.2023.04.007.


NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA.

Mandell Z, Oshiro R, Yakhnin A, Vishwakarma R, Kashlev M, Kearns D Elife. 2021; 10.

PMID: 33835023 PMC: 8060035. DOI: 10.7554/eLife.61880.


References
1.
Zhou K, Kuo W, Fillingham J, Greenblatt J . Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci U S A. 2009; 106(17):6956-61. PMC: 2678430. DOI: 10.1073/pnas.0806302106. View

2.
Wenzel S, Martins B, Rosch P, Wohrl B . Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface. Biochem J. 2009; 425(2):373-80. DOI: 10.1042/BJ20091422. View

3.
Belogurov G, Mooney R, Svetlov V, Landick R, Artsimovitch I . Functional specialization of transcription elongation factors. EMBO J. 2008; 28(2):112-22. PMC: 2634734. DOI: 10.1038/emboj.2008.268. View

4.
Artsimovitch I, Svetlov V, Anthony L, Burgess R, Landick R . RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J Bacteriol. 2000; 182(21):6027-35. PMC: 94735. DOI: 10.1128/JB.182.21.6027-6035.2000. View

5.
Pasman Z, von Hippel P . Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry. 2000; 39(18):5573-85. DOI: 10.1021/bi992658z. View