Hummels K, Kearns D
PLoS Genet. 2019; 15(6):e1008179.
PMID: 31237868
PMC: 6613710.
DOI: 10.1371/journal.pgen.1008179.
Artsimovitch I, Knauer S
mBio. 2019; 10(1).
PMID: 30808693
PMC: 6391919.
DOI: 10.1128/mBio.01547-18.
Said N, Krupp F, Anedchenko E, Santos K, Dybkov O, Huang Y
Nat Microbiol. 2017; 2:17062.
PMID: 28452979
DOI: 10.1038/nmicrobiol.2017.62.
Liu B, Steitz T
Nucleic Acids Res. 2016; 45(2):968-974.
PMID: 27899640
PMC: 5314768.
DOI: 10.1093/nar/gkw1159.
Tomar S, Artsimovitch I
Chem Rev. 2013; 113(11):8604-19.
PMID: 23638618
PMC: 4259564.
DOI: 10.1021/cr400064k.
RNA polymerase and the ribosome: the close relationship.
McGary K, Nudler E
Curr Opin Microbiol. 2013; 16(2):112-7.
PMID: 23433801
PMC: 4066815.
DOI: 10.1016/j.mib.2013.01.010.
An autoinhibited state in the structure of Thermotoga maritima NusG.
Drogemuller J, Stegmann C, Mandal A, Steiner T, Burmann B, Gottesman M
Structure. 2013; 21(3):365-75.
PMID: 23415559
PMC: 3764593.
DOI: 10.1016/j.str.2012.12.015.
An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor.
Burmann B, Knauer S, Sevostyanova A, Schweimer K, Mooney R, Landick R
Cell. 2012; 150(2):291-303.
PMID: 22817892
PMC: 3430373.
DOI: 10.1016/j.cell.2012.05.042.
Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.
Mooney R, Schweimer K, Rosch P, Gottesman M, Landick R
J Mol Biol. 2009; 391(2):341-58.
PMID: 19500594
PMC: 2763281.
DOI: 10.1016/j.jmb.2009.05.078.
RNA polymerase elongation factors.
Roberts J, Shankar S, Filter J
Annu Rev Microbiol. 2008; 62:211-33.
PMID: 18729732
PMC: 2819089.
DOI: 10.1146/annurev.micro.61.080706.093422.
Structural biophysics of the NusB:NusE antitermination complex.
Das R, Loss S, Li J, Waugh D, Tarasov S, Wingfield P
J Mol Biol. 2008; 376(3):705-20.
PMID: 18177898
PMC: 2267012.
DOI: 10.1016/j.jmb.2007.11.022.
Rho-dependent transcription termination: more questions than answers.
Banerjee S, Chalissery J, Bandey I, Sen R
J Microbiol. 2006; 44(1):11-22.
PMID: 16554712
PMC: 1838574.
Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
Zhou Y, Shi T, Mozola M, Olson E, Henthorn K, Brown S
J Bacteriol. 2006; 188(6):2222-32.
PMID: 16513752
PMC: 1428141.
DOI: 10.1128/JB.188.6.2222-2232.2006.
Requirement for NusG for transcription antitermination in vivo by the lambda N protein.
Zhou Y, Filter J, Court D, Gottesman M, Friedman D
J Bacteriol. 2002; 184(12):3416-8.
PMID: 12029062
PMC: 135089.
DOI: 10.1128/JB.184.12.3416-3418.2002.
Specific binding of Escherichia coli ribosomal protein S1 to boxA transcriptional antiterminator RNA.
Mogridge J, GREENBLATT J
J Bacteriol. 1998; 180(8):2248-52.
PMID: 9555913
PMC: 107157.
DOI: 10.1128/JB.180.8.2248-2252.1998.
Enhancing transcription through the Escherichia coli hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function together via a postinitiation mechanism.
Leeds J, Welch R
J Bacteriol. 1997; 179(11):3519-27.
PMID: 9171395
PMC: 179143.
DOI: 10.1128/jb.179.11.3519-3527.1997.
A NusG-like protein from Thermotoga maritima binds to DNA and RNA.
Liao D, Lurz R, Dobrinski B, Dennis P
J Bacteriol. 1996; 178(14):4089-98.
PMID: 8763936
PMC: 178165.
DOI: 10.1128/jb.178.14.4089-4098.1996.
Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro.
Burova E, Hung S, Sagitov V, Stitt B, GOTTESMAN M
J Bacteriol. 1995; 177(5):1388-92.
PMID: 7868616
PMC: 176748.
DOI: 10.1128/jb.177.5.1388-1392.1995.
NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator.
Burns C, Richardson J
Proc Natl Acad Sci U S A. 1995; 92(11):4738-42.
PMID: 7761393
PMC: 41782.
DOI: 10.1073/pnas.92.11.4738.
Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator.
DeVito J, Das A
Proc Natl Acad Sci U S A. 1994; 91(18):8660-4.
PMID: 7521531
PMC: 44666.
DOI: 10.1073/pnas.91.18.8660.