» Articles » PMID: 29027901

Structure of RNA Polymerase Bound to Ribosomal 30S Subunit

Overview
Journal Elife
Specialty Biology
Date 2017 Oct 14
PMID 29027901
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

In bacteria, mRNA transcription and translation are coupled to coordinate optimal gene expression and maintain genome stability. Coupling is thought to involve direct interactions between RNA polymerase (RNAP) and the translational machinery. We present cryo-EM structures of RNAP core bound to the small ribosomal 30S subunit. The complex is stable under cell-like ionic conditions, consistent with functional interaction between RNAP and the 30S subunit. The RNA exit tunnel of RNAP aligns with the Shine-Dalgarno-binding site of the 30S subunit. Ribosomal protein S1 forms a wall of the tunnel between RNAP and the 30S subunit, consistent with its role in directing mRNAs onto the ribosome. The nucleic-acid-binding cleft of RNAP samples distinct conformations, suggesting different functional states during transcription-translation coupling. The architecture of the 30S•RNAP complex provides a structural basis for co-localization of the transcriptional and translational machineries, and inform future mechanistic studies of coupled transcription and translation.

Citing Articles

Tracking transcription-translation coupling in real time.

Qureshi N, Duss O Nature. 2024; 637(8045):487-495.

PMID: 39633055 PMC: 11711091. DOI: 10.1038/s41586-024-08308-w.


Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction.

Khusainov I, Romanov N, Goemans C, Turonova B, Zimmerli C, Welsch S Nat Commun. 2024; 15(1):4783.

PMID: 38839776 PMC: 11153495. DOI: 10.1038/s41467-024-49084-5.


How Dedicated Ribosomes Translate a Leaderless mRNA.

Acosta-Reyes F, Bhattacharjee S, Gottesman M, Frank J J Mol Biol. 2024; 436(4):168423.

PMID: 38185325 PMC: 11003707. DOI: 10.1016/j.jmb.2023.168423.


Transcription-translation coupling: Recent advances and future perspectives.

Woodgate J, Zenkin N Mol Microbiol. 2023; 120(4):539-546.

PMID: 37856403 PMC: 10953045. DOI: 10.1111/mmi.15076.


A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery.

Wee L, Tong A, Ariza A, Canari-Chumpitaz C, Grob P, Nogales E Cell. 2023; 186(6):1244-1262.e34.

PMID: 36931247 PMC: 10135430. DOI: 10.1016/j.cell.2023.02.008.


References
1.
Rohou A, Grigorieff N . CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015; 192(2):216-21. PMC: 6760662. DOI: 10.1016/j.jsb.2015.08.008. View

2.
Julian P, Milon P, Agirrezabala X, Lasso G, Gil D, Rodnina M . The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol. 2011; 9(7):e1001095. PMC: 3130014. DOI: 10.1371/journal.pbio.1001095. View

3.
Bakshi S, Choi H, Mondal J, Weisshaar J . Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Mol Microbiol. 2014; 94(4):871-87. PMC: 4227943. DOI: 10.1111/mmi.12805. View

4.
Sanamrad A, Persson F, Lundius E, Fange D, Gynna A, Elf J . Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc Natl Acad Sci U S A. 2014; 111(31):11413-8. PMC: 4128099. DOI: 10.1073/pnas.1411558111. View

5.
Zhang G, Campbell E, Minakhin L, Richter C, Severinov K, Darst S . Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell. 1999; 98(6):811-24. DOI: 10.1016/s0092-8674(00)81515-9. View