» Articles » PMID: 27853510

CoNet App: Inference of Biological Association Networks Using Cytoscape

Overview
Journal F1000Res
Date 2016 Nov 22
PMID 27853510
Citations 267
Authors
Affiliations
Soon will be listed here.
Abstract

Here we present the Cytoscape app version of our association network inference tool CoNet. Though CoNet was developed with microbial community data from sequencing experiments in mind, it is designed to be generic and can detect associations in any data set where biological entities (such as genes, metabolites or species) have been observed repeatedly. The CoNet app supports Cytoscape 2.x and 3.x and offers a variety of network inference approaches, which can also be combined. Here we briefly describe its main features and illustrate its use on microbial count data obtained by 16S rDNA sequencing of arctic soil samples. The CoNet app is available at: http://apps.cytoscape.org/apps/conet.

Citing Articles

Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass.

Aguado-Norese C, Maldonado J, Hodar C, Galvez G, Palma D, Cambiazo V Environ Microbiome. 2025; 20(1):29.

PMID: 40069904 PMC: 11899425. DOI: 10.1186/s40793-024-00661-7.


Cross-validation for training and testing co-occurrence network inference algorithms.

Agyapong D, Propster J, Marks J, Hocking T BMC Bioinformatics. 2025; 26(1):74.

PMID: 40045231 PMC: 11883995. DOI: 10.1186/s12859-025-06083-7.


Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor.

Stuskova K, Vavrinik A, Hakalova E, cechova J, Gramaje D, Eichmeier A Mycorrhiza. 2025; 35(2):17.

PMID: 40044917 PMC: 11882661. DOI: 10.1007/s00572-025-01194-8.


Impacts of ammoniacal odour removal bioagent on air bacterial community.

Zhang H, Hu J, Peng X, Zhou L, Zhang T, Zhang Y Adv Biotechnol (Singap). 2025; 2(1):8.

PMID: 39883329 PMC: 11740863. DOI: 10.1007/s44307-024-00016-w.


A Generalized Bayesian Stochastic Block Model for Microbiome Community Detection.

Lutz K, Neugent M, Bedi T, De Nisco N, Li Q Stat Med. 2025; 44(3-4):e10291.

PMID: 39853798 PMC: 11760646. DOI: 10.1002/sim.10291.


References
1.
Fernandes A, Gloor G . Mutual information is critically dependent on prior assumptions: would the correct estimate of mutual information please identify itself?. Bioinformatics. 2010; 26(9):1135-9. DOI: 10.1093/bioinformatics/btq111. View

2.
Faust K, Lima-Mendez G, Lerat J, Sathirapongsasuti J, Knight R, Huttenhower C . Cross-biome comparison of microbial association networks. Front Microbiol. 2015; 6:1200. PMC: 4621437. DOI: 10.3389/fmicb.2015.01200. View

3.
Faust K, Raes J . Microbial interactions: from networks to models. Nat Rev Microbiol. 2012; 10(8):538-50. DOI: 10.1038/nrmicro2832. View

4.
. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207-14. PMC: 3564958. DOI: 10.1038/nature11234. View

5.
Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y . Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016; 10(7):1669-81. PMC: 4918442. DOI: 10.1038/ismej.2015.235. View