» Articles » PMID: 22796884

Microbial Interactions: from Networks to Models

Overview
Date 2012 Jul 17
PMID 22796884
Citations 1101
Authors
Affiliations
Soon will be listed here.
Abstract

Metagenomics and 16S pyrosequencing have enabled the study of ecosystem structure and dynamics to great depth and accuracy. Co-occurrence and correlation patterns found in these data sets are increasingly used for the prediction of species interactions in environments ranging from the oceans to the human microbiome. In addition, parallelized co-culture assays and combinatorial labelling experiments allow high-throughput discovery of cooperative and competitive relationships between species. In this Review, we describe how these techniques are opening the way towards global ecosystem network prediction and the development of ecosystem-wide dynamic models.

Citing Articles

Control of medical digital twins with artificial neural networks.

Bottcher L, Fonseca L, Laubenbacher R Philos Trans A Math Phys Eng Sci. 2025; 383(2292):20240228.

PMID: 40078154 PMC: 11904622. DOI: 10.1098/rsta.2024.0228.


Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass.

Aguado-Norese C, Maldonado J, Hodar C, Galvez G, Palma D, Cambiazo V Environ Microbiome. 2025; 20(1):29.

PMID: 40069904 PMC: 11899425. DOI: 10.1186/s40793-024-00661-7.


Alternative stable states of microbiome structure and soil ecosystem functions.

Fujita H, Yoshida S, Suzuki K, Toju H Environ Microbiome. 2025; 20(1):28.

PMID: 40050988 PMC: 11887376. DOI: 10.1186/s40793-025-00688-4.


Cross-validation for training and testing co-occurrence network inference algorithms.

Agyapong D, Propster J, Marks J, Hocking T BMC Bioinformatics. 2025; 26(1):74.

PMID: 40045231 PMC: 11883995. DOI: 10.1186/s12859-025-06083-7.


Keystone bacteria dynamics in chronic obstructive pulmonary disease (COPD): Towards differential diagnosis and probiotic candidates.

KavianFar A, Taherkhani H, Lanjanian H, Aminnezhad S, Ahmadi A, Azimzadeh S Heliyon. 2025; 11(4):e42719.

PMID: 40040961 PMC: 11876909. DOI: 10.1016/j.heliyon.2025.e42719.


References
1.
Woyke T, Teeling H, Ivanova N, Huntemann M, Richter M, Gloeckner F . Symbiosis insights through metagenomic analysis of a microbial consortium. Nature. 2006; 443(7114):950-5. DOI: 10.1038/nature05192. View

2.
Chaffron S, Rehrauer H, Pernthaler J, von Mering C . A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 2010; 20(7):947-59. PMC: 2892096. DOI: 10.1101/gr.104521.109. View

3.
Koenig J, Spor A, Scalfone N, Fricker A, Stombaugh J, Knight R . Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2010; 108 Suppl 1:4578-85. PMC: 3063592. DOI: 10.1073/pnas.1000081107. View

4.
Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris R . The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2008; 37(Database issue):D141-5. PMC: 2686447. DOI: 10.1093/nar/gkn879. View

5.
Valm A, Welch J, Rieken C, Hasegawa Y, Sogin M, Oldenbourg R . Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A. 2011; 108(10):4152-7. PMC: 3054005. DOI: 10.1073/pnas.1101134108. View