» Articles » PMID: 23587224

The Biological Observation Matrix (BIOM) Format Or: How I Learned to Stop Worrying and Love the Ome-ome

Overview
Journal Gigascience
Specialties Biology
Genetics
Date 2013 Apr 17
PMID 23587224
Citations 388
Authors
Affiliations
Soon will be listed here.
Abstract

Background: We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses.

Findings: The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages.

Conclusions: The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.

Citing Articles

Niche partitioning of microbial communities at an ancient vitrified hillfort: implications for vitrified radioactive waste disposal.

Plymale A, Wells J, Pearce C, Brislawn C, Graham E, Cheeke T Int Biodeterior Biodegradation. 2025; 38(1).

PMID: 40070387 PMC: 11894924. DOI: 10.1080/01490451.2020.1807658.


The cerebrospinal fluid virome in people with HIV: links to neuroinflammation and cognition.

Trunfio M, Scutari R, Fox V, Vuaran E, Dastgheyb R, Fini V bioRxiv. 2025; .

PMID: 40060671 PMC: 11888432. DOI: 10.1101/2025.02.28.640732.


Gut microbial predictors of first-line immunotherapy efficacy in advanced NSCLC patients.

Grenda A, Iwan E, Kuznar-Kaminska B, Bomba A, Bielinska K, Krawczyk P Sci Rep. 2025; 15(1):6139.

PMID: 39979394 PMC: 11842579. DOI: 10.1038/s41598-025-89406-1.


Ecogenomic insights into the resilience of keystone Blastococcus Species in extreme environments: a comprehensive analysis.

Sbissi I, Chouikhi F, Ghodhbane-Gtari F, Gtari M BMC Genomics. 2025; 26(1):51.

PMID: 39833680 PMC: 11748284. DOI: 10.1186/s12864-025-11228-2.


Incomplete human reference genomes can drive false sex biases and expose patient-identifying information in metagenomic data.

Guccione C, Patel L, Tomofuji Y, McDonald D, Gonzalez A, Sepich-Poore G Nat Commun. 2025; 16(1):825.

PMID: 39827261 PMC: 11742726. DOI: 10.1038/s41467-025-56077-5.


References
1.
Meyer F, Paarmann D, DSouza M, Olson R, Glass E, Kubal M . The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008; 9:386. PMC: 2563014. DOI: 10.1186/1471-2105-9-386. View

2.
Muegge B, Kuczynski J, Knights D, Clemente J, Gonzalez A, Fontana L . Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011; 332(6032):970-4. PMC: 3303602. DOI: 10.1126/science.1198719. View

3.
Sogin M, Morrison H, Huber J, Welch D, Huse S, Neal P . Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A. 2006; 103(32):12115-20. PMC: 1524930. DOI: 10.1073/pnas.0605127103. View

4.
Caporaso J, Lauber C, Costello E, Berg-Lyons D, Gonzalez A, Stombaugh J . Moving pictures of the human microbiome. Genome Biol. 2011; 12(5):R50. PMC: 3271711. DOI: 10.1186/gb-2011-12-5-r50. View

5.
Angiuoli S, White J, Matalka M, White O, Fricke W . Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS One. 2011; 6(10):e26624. PMC: 3197577. DOI: 10.1371/journal.pone.0026624. View